

Notes 2-27

Tuesday, March 27, 2007
5:35 PM

Last Time: Allylic bromination

Today: Nucleophilic Substitution Reactions

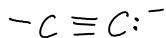
SN1
SN2

- Substitution vs. Elimination

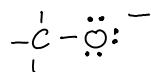
- Elimination
 - ◊ Favored when Nu: is a strong base
 - ◊ Favored at high temperatures
 - ◊ Major product has most substituted C=C
 - ◊ Can occur by E₁ or E₂ mechanisms
- Substitution
 - ◊ Favored when Nu: is a good nucleophile but a weak base
 - ◊ Can occur by S_N1 or S_N2 mechanisms

- Substitution of Alkyl Halides:

- Primary $\begin{array}{c} \text{H} \\ | \\ \text{C}-\text{C}-\text{X} \\ | \\ \text{H} \end{array}$
- Secondary $\begin{array}{c} \text{C} \\ | \\ \text{C}-\text{C}-\text{X} \\ | \\ \text{H} \end{array}$
- Tertiary $\begin{array}{c} \text{C} \\ | \\ \text{C}-\text{C}-\text{X} \\ | \\ \text{C} \end{array}$


- Strong Bases: (memorize all these)

- Amide
 - ◊ Elimination with 1°, 2°, 3° alkyl halides
 - ◊ Formula:

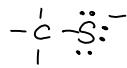

- Acetylide anion

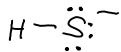
- ◊ Substitution with 1° alkyl halides; elimination with 2° and 3° alkyl halides
- ◊ Formula:

- Alkoxide

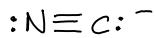
- ◊ Substitution with 1° alkyl halides; elimination with 2° and 3° alkyl halides
- ◊ Formula:

- Hydroxide

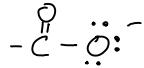

- ◊ Substitution with 1° alkyl halides; elimination with 2° and 3° alkyl halides
- ◊ Formula:


- How to determine strength of base/acid
 - K is large = strong acid
 - Small pK_a = strong acid
 - Conjugate base of a strong acid = weak base

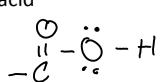
- Weak Bases:


- Thiolate

- Hydrosulfide

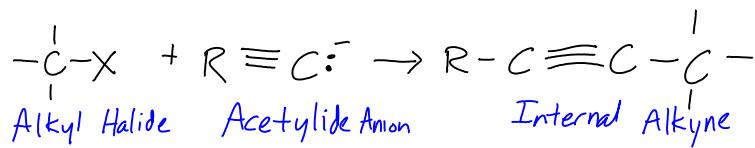

- Cyanide

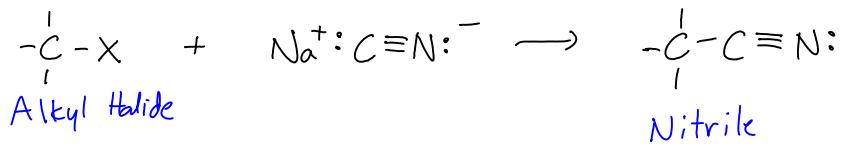
- Iodide


- Carboxylate

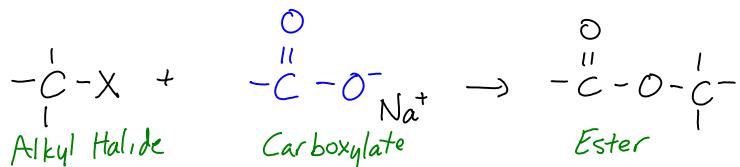
- Amine

- acid


- Basicity:

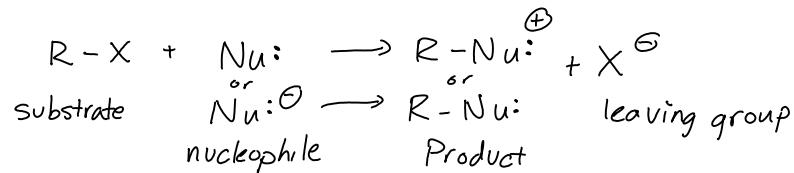


- Nucleophilicity:



- Product Structure (C=Nu)

- Product Structure (O=Nu)


- See hand out for rest of structures

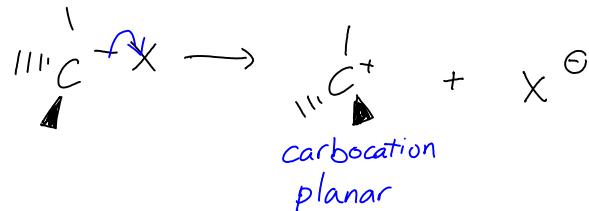
- Reactivity of Alkyl Substrate

- The weaker the basicity of X^- , the better the leaving group and the more reactive the alkyl halide
- Order of basicity $I^- > Br^- > Cl^- > F^-$
- So, the order of reactivity $RI > RBr > RCl > RF$

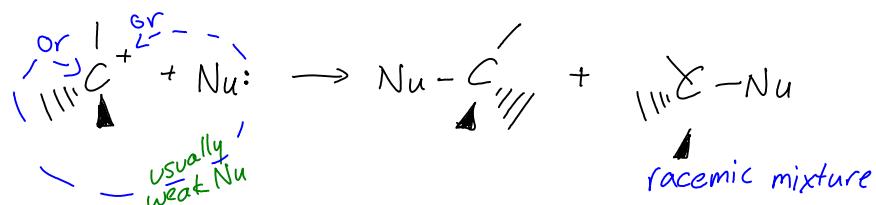
- Equilibrium

- Equilibrium will favor side with weaker Bronsted base

- Why? Because stronger Bronsted base displaces the weaker Bronsted base.


- Rate of displacement on the carbon substrate depends on nucleophilicity of the attacking base.

- Two Mechanisms for Nucleophilic Substitution Reactions.


- SN1

- First order kinetics
- Two step mechanism - forms carbocation intermediate
- Stereochemistry: racemic mixtures due to Nu attack at either face of carbocation

- Mechanism
- Step 1: Rate Determining Step $r = k[R-X]$

- Step 2: fast step

- Carbocation stability $3^\circ > 2^\circ > 1^\circ > \text{CH}_3^+$