


Notes: 4-3

Tuesday, April 03, 2007
5:38 PM

Last Time: Substitution Reactions, SN1, 1st order reaction

from

Today:

- Factors affecting the mechanism
- Rearrangements of SN1 mechanisms
- SN2 reactions
- SN1 mechanism (first order)
 - Two step mechanism
 - Unimolecular
 - Rate = $k[\text{alkyl halide}]$
 - Racemization of chirality at carbon
 - Reactivity of alkyl halides: $3^\circ > 2^\circ > 1^\circ$
- SN2 mechanism (2nd order)
 - Bimolecular reaction
 - Rate = $k[\text{alkyl halide}][\text{nucleophile}]$
 - Inversion of chirality at carbon
 - Reactivity of alkyl halides: $1^\circ > 2^\circ > 3^\circ$
- Alkyl Halide (substrate)
 - Steric effects: carbon is being attacked by the nucleophile in an SN2 mechanism
 - Steric strain experienced by nucleophile increases in the order $1^\circ < 2^\circ < 3^\circ$
 - So reactivity is $\text{CH}_3\text{X} > 1^\circ > 2^\circ$
 - Carbocation: intermediate in the SN1 mechanism
 - Electron-donation by attached carbons stabilizes carbocation intermediates: $3^\circ > 2^\circ > 1^\circ$
- On the board
 - SN1
 - Favored:
 - Alkyl halide is 3°

- X is good leaving group
 - No weak (neutral) because strong Nucleophile will directly attack the C if not sterically hindered (2nd order reaction)
 - Solvent is polarprotic (common solvents are ethanol, methanol, acetic acid, and formic acid)
 - Things to look at:
 - Alkyl halide/alcohol
 - 3° > 2°, allylic, benzylic
 - Carbooctaion rearrangement is possible
 - Leaving group - reaction proceeds fastest when x is a weak base
 - Leaving groups: P-toluenesulfonate (Ots) > I>Br>>Cl>F>OH
 - Nucleophile
 - Weak Nu favored SN1
 - Often neutral
 - Solvent
 - Polar protic solvents
 - H-bonding capability
 - ◆ Commonly alcohols, water, carboxylic acids
 - The solvent stabilizes transition states
- SN1 Rearrangements (SN2 does not do this since it does not have carbocations)
 - Carbocations frequently undergo structural changes call rearrangements to form more stable carbocations
 -