

Chapter 19**Ionic Equilibria in Aqueous Systems**

Homework:

Buffers

By definition a buffer resists the change in the pH when small amounts of either acid or base are added to the solution. A buffer is an acid-conjugate base or base-conjugate acid chemical system. In the human body buffers are at work constantly to maintain a blood pH of between 6.8 and 7.8. Outside this range life is not possible.

How Buffers Work: The Common Ion Effect

When a weak acid is mixed with its conjugate base the pH is moderated some where between the pH expected of either the acid alone or conjugate base alone. Likewise, when a weak base is mixed with its conjugate acid the pH is moderated some where between the pH expected of either the base alone or conjugate acid alone.

This causes a buffering effect that resists a change in the pH. This buffering effect is because both acid and conjugate base are present in the solution. When strong acid is added to the solution, the base reacts with it producing a weak acid. When strong base is added to the solution, the acid reacts with it producing a weak base.

There are several ways to get an acid and conjugate base, or base and conjugate acid in a solution at the same time. One could put a weak acid or base and a salt containing its conjugate in the solution thus creating a buffer, or one could put a weak acid with a strong base, or one could put a weak base with a strong acid. No matter how the solution is created;

- 1 All equilibria must be obeyed simultaneously.
- 2 The stronger acid or base controls the pH.
- 3 Excess strong acid or base controls the pH.
- 4 The final concentrations of species are what control the pH.

Problem:

- a) Design a buffer system having a pH of 3 using acetic acid and sodium acetate.
- b) Calculate the pH for a liter of water to which 1 mL of 1M HCl has been added.
- c) Calculate the pH for a liter of water to which 1 mL of 1M NaOH has been added.
- d) Calculate the pH for a liter of the buffer system created in part a) when 1 mL of 1M HCl has been added.
- e) Calculate the pH for a liter of the buffer system created in part a) when 1 mL of 1M NaOH has been added.

Problem:

Design a buffer having a pH of 8.2.

Problem:

Find the pH of a solution made by adding 30 ml of .5 M HCl to 50 ml of 1 M NH₄.

Problem:

Find the pH of a solution made by adding .1 moles of HCN and .05 moles of KCN to 100 ml of water.

Titrations and pH Curves

Problem: Strong acid-strong base titration

Accurately draw a titration curve for the addition of .1 M NaOH into 10 mL of .1 M HCl. Use 1 mL increments and add a total of 15 mL of base.

Liters	Total V _{acid}	Total V _{total}	Total mol H ⁺	Total mol OH ⁻	x ₁ mol H ⁺	x ₁ mol OH ⁻	[H ⁺]	[OH ⁻]	pH
0	.010	.010	.001	0	.01	0	.1	1×10^{-13}	1
.001	.010	.011	.001	.0001	.0009	0	.08182	2.22×10^{-13}	1.09
.002	.010	.012	.001	.0002	.0008	0	.06667		1.14
.003	.010	.013							
.004									

Use a spreadsheet to finish filling out all data up to 15mL of base added and draw an accurate pH vs mL base graph.

Problems to consider for your graph.

- a) On your graphs clearly show the equivalence point.
- b) Find the pH at 5 ml. (The half equivalence point) This should be no surprise.
- c) What indicator(s) should be used for the neutralization of this strong acid.
- d) Is there any buffering effect for the titration of a strong acid-strong base titration?

Problem: Weak acid-strong base titration

Accurately draw a titration curve for the addition of .1 M NaOH into 10 mL of .1 M HOAc. $K_a = 1.8 \times 10^{-5}$. Use 1 mL increments and add a total of 15 mL of base.
Liters	Mole V_{base}	Mole V_{total}	Mole HOAc	Mole OH⁻	x₁ mole HOAc	x₁ mole OH⁻	x₂ mole HOAc	x₂ mole OH⁻	x₃ mole HOAc	x₃ mole OH⁻	x₄ mole HOAc	x₄ mole OH⁻	x₅ mole HOAc	x₅ mole OH⁻	x₆ mole HOAc	x₆ mole OH⁻	x₇ mole HOAc	x₇ mole OH⁻	x₈ mole HOAc	x₈ mole OH⁻	x₉ mole HOAc	x₉ mole OH⁻	x₁₀ mole HOAc	x₁₀ mole OH⁻	x₁₁ mole HOAc	x₁₁ mole OH⁻	x₁₂ mole HOAc	x₁₂ mole OH⁻	x₁₃ mole HOAc	x₁₃ mole OH⁻	x₁₄ mole HOAc	x₁₄ mole OH⁻	x₁₅ mole HOAc	x₁₅ mole OH⁻	x₁₆ mole HOAc	x₁₆ mole OH⁻	x₁₇ mole HOAc	x₁₇ mole OH⁻	x₁₈ mole HOAc	x₁₈ mole OH⁻	x₁₉ mole HOAc	x₁₉ mole OH⁻	x₂₀ mole HOAc	x₂₀ mole OH⁻	x₂₁ mole HOAc	x₂₁ mole OH⁻	x₂₂ mole HOAc	x₂₂ mole OH⁻	x₂₃ mole HOAc	x₂₃ mole OH⁻	x₂₄ mole HOAc	x₂₄ mole OH⁻	x₂₅ mole HOAc	x₂₅ mole OH⁻	x₂₆ mole HOAc	x₂₆ mole OH⁻	x₂₇ mole HOAc	x₂₇ mole OH⁻	x₂₈ mole HOAc	x₂₈ mole OH⁻	x₂₉ mole HOAc	x₂₉ mole OH⁻	x₃₀ mole HOAc	x₃₀ mole OH⁻	x₃₁ mole HOAc	x₃₁ mole OH⁻	x₃₂ mole HOAc	x₃₂ mole OH⁻	x₃₃ mole HOAc	x₃₃ mole OH⁻	x₃₄ mole HOAc	x₃₄ mole OH⁻	x₃₅ mole HOAc	x₃₅ mole OH⁻	x₃₆ mole HOAc	x₃₆ mole OH⁻	x₃₇ mole HOAc	x₃₇ mole OH⁻	x₃₈ mole HOAc	x₃₈ mole OH⁻	x₃₉ mole HOAc	x₃₉ mole OH⁻	x₄₀ mole HOAc	x₄₀ mole OH⁻	x₄₁ mole HOAc	x₄₁ mole OH⁻	x₄₂ mole HOAc	x₄₂ mole OH⁻	x₄₃ mole HOAc	x₄₃ mole OH⁻	x₄₄ mole HOAc	x₄₄ mole OH⁻	x₄₅ mole HOAc	x₄₅ mole OH⁻	x₄₆ mole HOAc	x₄₆ mole OH⁻	x₄₇ mole HOAc	x₄₇ mole OH⁻	x₄₈ mole HOAc	x₄₈ mole OH⁻	x₄₉ mole HOAc	x₄₉ mole OH⁻	x₅₀ mole HOAc	x₅₀ mole OH⁻	x₅₁ mole HOAc	x₅₁ mole OH⁻	x₅₂ mole HOAc	x₅₂ mole OH⁻	x₅₃ mole HOAc	x₅₃ mole OH⁻	x₅₄ mole HOAc	x₅₄ mole OH⁻	x₅₅ mole HOAc	x₅₅ mole OH⁻	x₅₆ mole HOAc	x₅₆ mole OH⁻	x₅₇ mole HOAc	x₅₇ mole OH⁻	x₅₈ mole HOAc	x₅₈ mole OH⁻	x₅₉ mole HOAc	x₅₉ mole OH⁻	x₆₀ mole HOAc	x₆₀ mole OH⁻	x₆₁ mole HOAc	x₆₁ mole OH⁻	x₆₂ mole HOAc	x₆₂ mole OH⁻	x₆₃ mole HOAc	x₆₃ mole OH⁻	x₆₄ mole HOAc	x₆₄ mole OH⁻	x₆₅ mole HOAc	x₆₅ mole OH⁻	x₆₆ mole HOAc	x₆₆ mole OH⁻	x₆₇ mole HOAc	x₆₇ mole OH⁻	x₆₈ mole HOAc	x₆₈ mole OH⁻	x₆₉ mole HOAc	x₆₉ mole OH⁻	x₇₀ mole HOAc	x₇₀ mole OH⁻	x₇₁ mole HOAc	x₇₁ mole OH⁻	x₇₂ mole HOAc	x₇₂ mole OH⁻	x₇₃ mole HOAc	x₇₃ mole OH⁻	x₇₄ mole HOAc	x₇₄ mole OH⁻	x₇₅ mole HOAc	x₇₅ mole OH⁻	x₇₆ mole HOAc	x₇₆ mole OH⁻	x₇₇ mole HOAc	x₇₇ mole OH⁻	x₇₈ mole HOAc	x₇₈ mole OH⁻	x₇₉ mole HOAc	x₇₉ mole OH⁻	x₈₀ mole HOAc	x₈₀ mole OH⁻	x₈₁ mole HOAc	x₈₁ mole OH⁻	x₈₂ mole HOAc	x₈₂ mole OH⁻	x₈₃ mole HOAc	x₈₃ mole OH⁻	x₈₄ mole HOAc	x₈₄ mole OH⁻	x₈₅ mole HOAc	x₈₅ mole OH⁻	x₈₆ mole HOAc	x₈₆ mole OH⁻	x₈₇ mole HOAc	x₈₇ mole OH⁻	x₈₈ mole HOAc	x₈₈ mole OH⁻	x₈₉ mole HOAc	x₈₉ mole OH⁻	x₉₀ mole HOAc	x₉₀ mole OH⁻	x₉₁ mole HOAc	x₉₁ mole OH⁻	x₉₂ mole HOAc	x₉₂ mole OH⁻	x₉₃ mole HOAc	x₉₃ mole OH⁻	x₉₄ mole HOAc	x₉₄ mole OH⁻	x₉₅ mole HOAc	x₉₅ mole OH⁻	x₉₆ mole HOAc	x₉₆ mole OH⁻	x₉₇ mole HOAc	x₉₇ mole OH⁻	x₉₈ mole HOAc	x₉₈ mole OH⁻	x₉₉ mole HOAc	x₉₉ mole OH⁻	x₁₀₀ mole HOAc	x₁₀₀ mole OH⁻	x₁₀₁ mole HOAc	x₁₀₁ mole OH⁻	x₁₀₂ mole HOAc	x₁₀₂ mole OH⁻	x₁₀₃ mole HOAc	x₁₀₃ mole OH⁻	x₁₀₄ mole HOAc	x₁₀₄ mole OH⁻	x₁₀₅ mole HOAc	x₁₀₅ mole OH⁻	x₁₀₆ mole HOAc	x₁₀₆ mole OH⁻	x₁₀₇ mole HOAc	x₁₀₇ mole OH⁻	x₁₀₈ mole HOAc	x₁₀₈ mole OH⁻	x₁₀₉ mole HOAc	x₁₀₉ mole OH⁻	x₁₁₀ mole HOAc	x₁₁₀ mole OH⁻	x₁₁₁ mole HOAc	x₁₁₁ mole OH⁻	x₁₁₂ mole HOAc	x₁₁₂ mole OH⁻	x₁₁₃ mole HOAc	x₁₁₃ mole OH⁻	x₁₁₄ mole HOAc	x₁₁₄ mole OH⁻	x₁₁₅ mole HOAc	x₁₁₅ mole OH⁻	x₁₁₆ mole HOAc	x₁₁₆ mole OH⁻	x₁₁₇ mole HOAc	x₁₁₇ mole OH⁻	x₁₁₈ mole HOAc	x₁₁₈ mole OH⁻	x₁₁₉ mole HOAc	x₁₁₉ mole OH⁻	x₁₂₀ mole HOAc	x₁₂₀ mole OH⁻	x₁₂₁ mole HOAc	x₁₂₁ mole OH⁻	x₁₂₂ mole HOAc	x₁₂₂ mole OH⁻	x₁₂₃ mole HOAc	x₁₂₃ mole OH⁻	x₁₂₄ mole HOAc	x₁₂₄ mole OH⁻	x₁₂₅ mole HOAc	x₁₂₅ mole OH⁻	x₁₂₆ mole HOAc	x₁₂₆ mole OH⁻	x₁₂₇ mole HOAc	x₁₂₇ mole OH⁻	x₁₂₈ mole HOAc	x₁₂₈ mole OH⁻	x₁₂₉ mole HOAc	x₁₂₉ mole OH⁻	x₁₃₀ mole HOAc	x₁₃₀ mole OH⁻	x₁₃₁ mole HOAc	x₁₃₁ mole OH⁻	x₁₃₂ mole HOAc	x₁₃₂ mole OH⁻	x₁₃₃ mole HOAc	x₁₃₃ mole OH⁻	x₁₃₄ mole HOAc	x₁₃₄ mole OH⁻	x₁₃₅ mole HOAc	x₁₃₅ mole OH⁻	x₁₃₆ mole HOAc	x₁₃₆ mole OH⁻	x₁₃₇ mole HOAc	x₁₃₇ mole OH⁻	x₁₃₈ mole HOAc	x₁₃₈ mole OH⁻	x₁₃₉ mole HOAc	x₁₃₉ mole OH⁻	x₁₄₀ mole HOAc	x₁₄₀ mole OH⁻	x₁₄₁ mole HOAc	x₁₄₁ mole OH⁻	x₁₄₂ mole HOAc	x₁₄₂ mole OH⁻	x₁₄₃ mole HOAc	x₁₄₃ mole OH⁻	x₁₄₄ mole HOAc	x₁₄₄ mole OH⁻	x₁₄₅ mole HOAc	x₁₄₅ mole OH⁻	x₁₄₆ mole HOAc	x₁₄₆ mole OH⁻	x₁₄₇ mole HOAc	x₁₄₇ mole OH⁻	x₁₄₈ mole HOAc	x₁₄₈ mole OH⁻	x₁₄₉ mole HOAc	x₁₄₉ mole OH⁻	x₁₅₀ mole HOAc	x₁₅₀ mole OH⁻	x₁₅₁ mole HOAc	x₁₅₁ mole OH⁻	x₁₅₂ mole HOAc	x₁₅₂ mole OH⁻	x₁₅₃ mole HOAc	x₁₅₃ mole OH⁻	x₁₅₄ mole HOAc	x₁₅₄ mole OH⁻	x₁₅₅ mole HOAc	x₁₅₅ mole OH⁻	x₁₅₆ mole HOAc	x₁₅₆ mole OH⁻	x₁₅₇ mole HOAc	x₁₅₇ mole OH⁻	x₁₅₈ mole HOAc	x₁₅₈ mole OH⁻	x₁₅₉ mole HOAc	x₁₅₉ mole OH⁻	x₁₆₀ mole HOAc	x₁₆₀ mole OH⁻	x₁₆₁ mole HOAc	x₁₆₁ mole OH⁻	x₁₆₂ mole HOAc	x₁₆₂ mole OH⁻	x₁₆₃ mole HOAc	x₁₆₃ mole OH⁻	x₁₆₄ mole HOAc	x₁₆₄ mole OH⁻	x₁₆₅ mole HOAc	x₁₆₅ mole OH⁻	x₁₆₆ mole HOAc	x₁₆₆ mole OH⁻	x₁₆₇ mole HOAc	x₁₆₇ mole OH⁻	x₁₆₈ mole HOAc	x₁₆₈ mole OH⁻	x₁₆₉ mole HOAc	x₁₆₉ mole OH⁻	x₁₇₀ mole HOAc	x₁₇₀ mole OH⁻	x₁₇₁ mole HOAc	x₁₇₁ mole OH⁻	x₁₇₂ mole HOAc	x₁₇₂ mole OH⁻	x₁₇₃ mole HOAc	x₁₇₃ mole OH⁻	x₁₇₄ mole HOAc	x₁₇₄ mole OH⁻	x₁₇₅ mole HOAc	x₁₇₅ mole OH⁻	x₁₇₆ mole HOAc	x₁₇₆ mole OH⁻	x₁₇₇ mole HOAc	x₁₇₇ mole OH⁻	x₁₇₈ mole HOAc	x₁₇₈ mole OH⁻	x₁₇₉ mole HOAc	x₁₇₉ mole OH⁻	x₁₈₀ mole HOAc	x₁₈₀ mole OH⁻	x₁₈₁ mole HOAc	x₁₈₁ mole OH⁻	x₁₈₂ mole HOAc	x₁₈₂ mole OH⁻	x₁₈₃ mole HOAc	x₁₈₃ mole OH⁻	x₁₈₄ mole HOAc	x₁₈₄ mole OH⁻	x₁₈₅ mole HOAc	x₁₈₅ mole OH⁻	x₁₈₆ mole HOAc	x₁₈₆ mole OH⁻	x₁₈₇ mole HOAc	x₁₈₇ mole OH⁻	x₁₈₈ mole HOAc	x₁₈₈ mole OH⁻	x₁₈₉ mole HOAc	x₁₈₉ mole OH⁻	x₁₉₀ mole HOAc	x₁₉₀ mole OH⁻	x₁₉₁ mole HOAc	x₁₉₁ mole OH⁻	x₁₉₂ mole HOAc	x₁₉₂ mole OH⁻	x₁₉₃ mole HOAc	x₁₉₃ mole OH⁻	x₁₉₄ mole HOAc	x₁₉₄ mole OH⁻	x₁₉₅ mole HOAc	x₁₉₅ mole OH⁻	x₁₉₆ mole HOAc	x₁₉₆ mole OH⁻	x₁₉₇ mole HOAc	x₁₉₇ mole OH⁻	x₁₉₈ mole HOAc	x₁₉₈ mole OH⁻	x₁₉₉ mole HOAc	x₁₉₉ mole OH⁻	x₂₀₀ mole HOAc	x₂₀₀ mole OH⁻	x₂₀₁ mole HOAc	x₂₀₁ mole OH⁻	x₂₀₂ mole HOAc	x₂₀₂ mole OH⁻	x₂₀₃ mole HOAc	x₂₀₃ mole OH⁻	x₂₀₄ mole HOAc	x₂₀₄ mole OH⁻	x₂₀₅ mole HOAc	x₂₀₅ mole OH⁻	x₂₀₆ mole HOAc	x₂₀₆ mole OH⁻	x₂₀₇ mole HOAc	x₂₀₇ mole OH⁻	x₂₀₈ mole HOAc	x₂₀₈ mole OH⁻	x₂₀₉ mole HOAc	x₂₀₉ mole OH⁻	x₂₁₀ mole HOAc	x₂₁₀ mole OH⁻	x₂₁₁ mole HOAc	x₂₁₁ mole OH⁻	x₂₁₂ mole HOAc	x₂₁₂ mole OH⁻	x₂₁₃ mole HOAc	x₂₁₃ mole OH⁻	x₂₁₄ mole HOAc	x₂₁₄ mole OH⁻	x₂₁₅ mole HOAc	x₂₁₅ mole OH⁻	x₂₁₆ mole HOAc	x₂₁₆ mole OH⁻	x₂₁₇ mole HOAc	x₂₁₇ mole OH⁻	x₂₁₈ mole HOAc	x₂₁₈ mole OH⁻	x₂₁₉ mole HOAc	x₂₁₉ mole OH⁻	x₂₂₀ mole HOAc	x₂₂₀ mole OH⁻	x₂₂₁ mole HOAc	x₂₂₁ mole OH⁻	x₂₂₂ mole HOAc	x₂₂₂ mole OH⁻	x₂₂₃ mole HOAc	x₂₂₃ mole OH⁻	x₂₂₄ mole HOAc	x₂₂₄ mole OH⁻	x₂₂₅ mole HOAc	x₂₂₅ mole OH⁻	x₂₂₆ mole HOAc	x₂₂₆ mole OH⁻	x₂₂₇ mole HOAc	x₂₂₇ mole OH⁻	x₂₂₈ mole HOAc	x₂₂₈ mole OH⁻	x₂₂₉ mole HOAc	x₂₂₉ mole OH⁻	x₂₃₀ mole HOAc	x₂₃₀ mole OH⁻	x₂₃₁ mole HOAc	x₂₃₁ mole OH⁻	x₂₃₂ mole HOAc	x₂₃₂ mole OH⁻	x₂₃₃ mole HOAc	x₂₃₃ mole OH⁻	x₂₃₄ mole

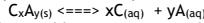
c) Find the $[H^+]$ at the half equivalents point. Does this look familiar?
 d) Prove that $K_a = [H^+]$ at the half equivalents point.
 e) What indicators should be used for a neutralization titration for this acid.
 f) Clearly indicate the buffer region on the graph.

The Henderson-Hasselbalch Equation

$$pH = pK_a + \log([base]/[acid])$$

Problem:

Use the Henderson-Hasselbalch equation to calculate the pH at the one fourth equivalents point for your acetic acid - sodium hydroxide graph; i.e. 2.5 mL NaOH added.


Solubility Product Constant (K_{sp})

When a salt dissolves in water the ions dissociate and are present in solution in the same proportions found in the salt.

Note: C=cation, A=anions, and x & y are the subscripts for the salt.

When a salt is saturated or the salt is only slightly soluble in water, an equilibrium is set up between the solid and aqueous phases of the salt.

The equilibrium expression for this process is:

$$K_{sp} = [C_{(aq)}]^x[A_{(aq)}]^y / [C_xA_y(s)]$$

The concentration of the solid phase has no physical meaning and is assigned a constant value of 1. This leads to the general expression for the solubility product:

$$Q_{sp} = [\text{Cations}]^x[\text{Anions}]^y \text{ which equals } K_{sp} \text{ at saturation.}$$

If $[\text{Cations}]^x[\text{Anions}]^y < K_{sp}$ the solution is unsaturated and can dissolve more solid. If $[\text{Cations}]^x[\text{Anions}]^y = K_{sp}$ the solution is saturated and no more solid can dissolve. If $[\text{Cations}]^x[\text{Anions}]^y > K_{sp}$ the solution is supersaturated and precipitation will occur until saturation is reached.

Problem:

Write the K_{sp} expressions for AgCl and Ag_2CrO_4 . Which salt AgCl or Ag_2CrO_4 will form a more concentrated saturated solution? $K_{sp}(\text{AgCl}) = 1.8 \times 10^{-10}$, $K_{sp}(\text{Ag}_2\text{CrO}_4) = 1.1 \times 10^{-12}$

Problem:

a) How many grams of PbCl_2 can dissolve in 100 g of water? $K_{sp} = 1.6 \times 10^{-5}$.
 b) What must the chloride concentration be brought to in order to reduce the $[\text{Pb}^{2+}]$ to half the saturation level?

Problem:

A solution is .2 M $\text{Pb}(\text{NO}_3)_2$. How many grams of NaCl need to be added to this solution to lower the Pb^{2+} concentration to .001 M?

Problem:

What is the maximum concentration of chloride that can exist in a .1 M AgNO_3 solution and not cause any precipitation?

Problem:

What concentration of sulfide must be present to make a maximum separation of zinc ions and copper ions? Assume that both concentrations are .1 M initially. $K_{sp}(\text{ZnS}) = 1.1 \times 10^{-21}$, $K_{sp}(\text{CuS}) = 6 \times 10^{-36}$

Problem:

What percent of copper ions was removed in the above problem?

Problem:

$\text{H}_2\text{S}(g)$ is soluble in water to the extent of .1 M at 1 atm. What must the pH be in order to make the maximum separation of zinc ions and copper ions? Assume that both concentrations are .1 M initially. $K_{a1}K_{a2} = K_{\text{H2S}} = 1.1 \times 10^{-20}$

Effect of pH on Solubility

For many reactions, the equilibrium will be shifted by the addition of either acid or base. The H^+ or OH^- may react directly with one of the ionic species of the salt or may set up another equilibrium, which increases or decreases the concentration of one of the ionic species. Here are examples of each.

Problem:

At what pH will a solution of .1 M AlCl_3 give precipitation? $K_{sp} = 4.6 \times 10^{-33}$

Problem:

CaC_2O_4 is relatively insoluble in neutral and basic solutions; however in acidic solutions it becomes much more soluble. Determine the solubility of CaC_2O_4 in 1 liter of water when the pH has been adjusted to 7 and then adjusted to 2. $K_{sp} = 2.3 \times 10^{-9}$, $K_{a1}K_{a2} = K_{\text{H2C2O4}} = 2.86 \times 10^{-6}$

From this example, you can see that all equilibria must be simultaneously satisfied.

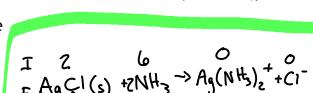
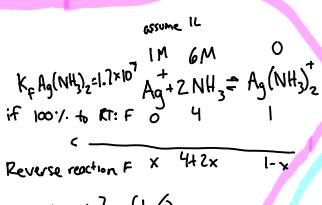
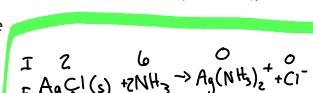
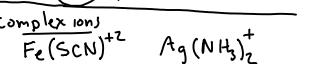
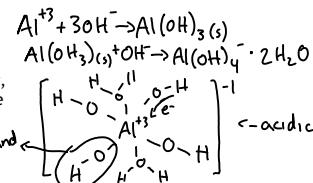
Complex-Ion Equilibria

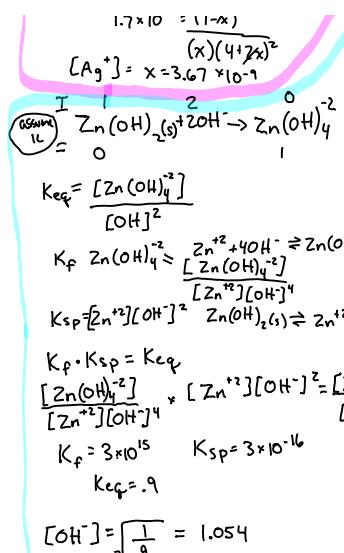
A complex ion is an ion formed by attaching electron pair donors called ligands to metal ions. A brief list of ligands: NH_3 , CN^- , OH^- , Cl^- , H_2O , Cl^- . One thing that all ligands have in common is a pair of electrons to donate to the central ion.

We treat complex-ion equilibria just like any other equilibrium; however, we may think of the equilibria as either formation of complex ions or the dissociation of complex ions. Consider the formation of silver ammine complex:

$K_{\text{formation}} = [\text{Ag}(\text{NH}_3)_2^+]/[\text{Ag}^+][\text{NH}_3]^2$

Consider the dissociation of the silver ammine complex:

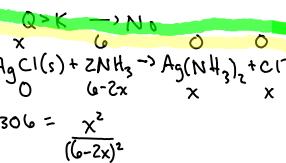
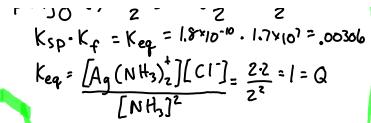
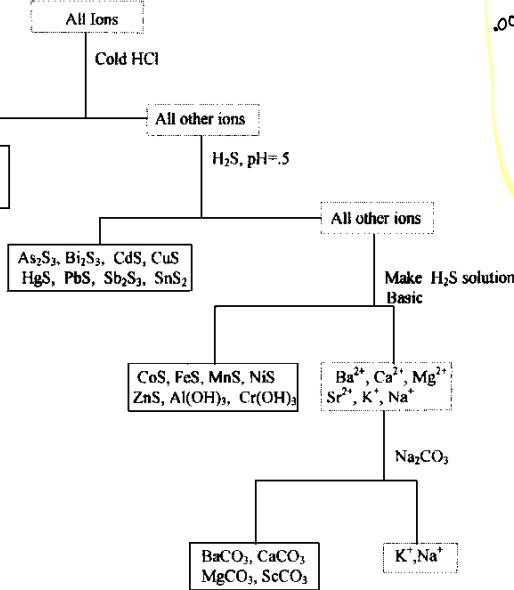







Problem: .1 moles of AgNO_3 is dissolved in 100 mL of 6 M NH_3 . What is the $[\text{Ag}^+]$?

Problem:

At what pH will 1 mole of $\text{Zn}(\text{OH})_2$ completely dissolve in 1 L to form the $\text{Zn}(\text{OH})_4^{2-}$ complex?

It is a general rule that all equilibria must be obeyed

simultaneously. Consider the interplay between the complex-ion equilibria and solubility equilibria for the insoluble salt, $AgCl$, and the stable complex, $Ag(NH_3)_2^+$:

Problem:

Will 2 moles of $AgCl$ dissolve in 100 mL of 6 M NH_3 ?

Application of Solubility Equilibria in Qualitative Chemical Analysis

$$6\sqrt{.00306 \times 10^{-3}} + 2\sqrt{3.06 \times 10^{-3}}x = x$$

$$x = .299$$

$x = \text{amt } AgCl(s) \text{ dissolved in 1L}$
 $\text{in 100 mL} = .0299 \text{ mole}$

Pasted from <http://fp.academic.venturacollege.edu/doliver/chem1b/notes/Chap19new.htm>

114) $KCl \quad 3.7 \text{ M} @ 25^\circ\text{C} \quad 100 \text{ mL}$

100mL 6M HCl
100mL 12M HCl

$$K_{sp} = [K^+][Cl^-] = (3.7 \text{ M})(3.7 \text{ M}) = 13.69$$

$$13.69 = \left(\frac{3.7}{2}\right) \left(\frac{3.7 + 6}{2}\right) = Q = 8.97$$

$Q < K$ no precipitate

$$13.69 = \left(\frac{3.7}{2}\right) \left(\frac{3.7 + 1.2}{2}\right) = 14.5$$

$Q > K$

How much precipitates?

$$K_{sp} = [K^+][Cl^-]$$

$$13.69 = \left(\frac{3.7}{2}\right)(x)$$

$x = 7.4 \text{ M } Cl^- \text{ c-total that can dissolve}$

$$13.69 = (1.85-x)(7.85-x)$$

$$0 = x^2 - 9.7x + .8325$$

$$x = \frac{9.7 \pm \sqrt{9.7^2 - 4(.8325)}}{2}$$

$$x = 0.08869 \text{ M}$$

$$\frac{.008869 \text{ mol}}{1 \text{ L}} \times .200 \text{ L} \times \frac{74.55 \text{ g } KCl}{1 \text{ mol}} = \boxed{1 \text{ g}}$$