

Spontaneous Processes and Entropy: The Second Law of Thermodynamics

Most processes have a natural tendency to move in one direction. We first consider the case of two bottles connected at the mouths by a stopcock, the bottle on the left is filled with a gas and the bottle on the right is evacuated. If the stopcock is opened, the gas rushes from the filled to the evacuated bottle. Why?? What about the reverse process?? It is hard to imagine all the gas staying in the filled bottle when the stopcock is opened. This leads to a partial statement of the second law of thermodynamics.

A Process that is spontaneous in one direction is not spontaneous in the reverse direction.

The directional driving force for all systems is a lowering of the total energy of the system. However, how could the expansion of the gas into the evacuated chamber cause a lowering of the total energy?

Entropy

Entropy, S , is the measure of the randomness of a system. The more ordered a system, the lower the entropy of that system. A crystalline system has much lower entropy than a liquid system, and a liquid system has much lower entropy than a gaseous system. Particles are more ordered when their positions are confined to smaller volumes.

Spontaneous systems tend toward greater randomness; the entropy is the property that changes when the gas expands into a vacuum. This leads to the remainder of the second law:

In any spontaneous process, there is always an increase in entropy (randomness).

Randomness can take many forms in molecules. For instance, a triatomic gas can have several modes of vibration, rotation and translation.

The entropy change of a system is also a state function; that is it only depends upon the initial and final entropy state for the system provided that no heat enters or leaves the system; that is:

$$\Delta S = S_f - S_i$$

Since heat added to a system increases the entropy of a system, a more complete statement for the second law would be:

$$\Delta S = S_f - S_i + q/T$$

where the term q/T represents the change in entropy when heat flows into or out of the system.

It should be noted that for a spontaneous system $\Delta S > q/T$ and when a system is at equilibrium, $\Delta S = q/T$.

Problem:

Calculate the entropy change for the following reaction under standard conditions: $\text{CH}_4 + 2\text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O}_{(g)}$

Problem:

Calculate the entropy change when 10 g of ice slowly (near equilibrium) melts at 0°C.

The second law of thermodynamics states that the total entropy of a system and its surroundings always increases for a spontaneous process.

Since $q=DH$ at constant pressure and temperature we can say:

$$\Delta S > q/T = DH/T$$

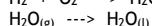
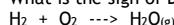
which rearranges to:

$$DH - T\Delta S < 0$$

which implies that any reaction will be spontaneous if $T\Delta S$ is larger than DH .

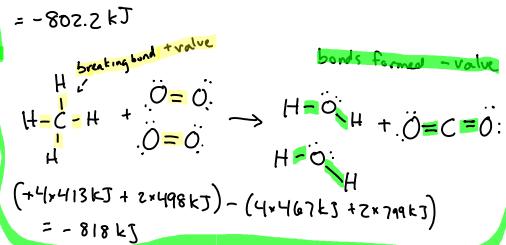
Standard Entropies and the Third Law of Thermodynamics

The third law states that a perfect crystalline substance at 0K has an entropy of zero.



As the temperature is increased by adding heat, the entropy of the system must increase as q/T . If we start at 0 K and increase the temperature to 298 K, the sum of all entropy changes (all phase changes and temperature changes) is called the standard entropy, S° . Using standard entropies, one can quantitatively calculate changes in standard entropy for a system using:

$$\Delta S = S^\circ_{\text{Products}} - S^\circ_{\text{Reactants}}$$

However many times it is possible to determine the sign of ΔS° by just looking at the reaction and determining if the system has become more random, i.e., did the reaction form a larger number of smaller molecules, increase the moles of gas present, or was there a phase change where a solid melted or a liquid vaporized?


Problem:

What is the sign of ΔS° for the following reactions.

Free-Energy

Free energy is the energy that drives a chemical

ΔG°	$\Delta H^\circ - T\Delta S$	ΔS	Desc
Always +	+	-	Always nonspontaneous
Always -	-	+	Always spontaneous
	+	+	Spon. At high temp
	-	-	Spon. at low temp

reaction. Recall the term:

$\Delta H - T\Delta S < 0$ implies a reaction is spontaneous. Well the $\Delta H - T\Delta S$ is defined as the free energy for the system and can have any sign. That is:

$$\Delta G = \Delta H - T\Delta S$$

and when ΔG is negative, the reaction is spontaneous.

When ΔG is positive, the reaction is non-spontaneous.

When ΔG is zero, the reaction is at equilibrium.

As with the other thermodynamic quantities ΔG° values are tabulated and the standard free energy for a system can be calculated from the information in these tables.

$$\Delta G^\circ = \Delta G^\circ_{\text{Products}} - \Delta G^\circ_{\text{Reactants}}$$

Problem:

At what temperature will the production of ammonia become spontaneous assuming ΔS° and ΔH° are constant? The reason ΔG° is so important, is that we can use it to calculate equilibrium constants for reactions using the equation:

$$\Delta G = -RT \ln K \quad \text{or} \quad \Delta G^\circ = -2.303RT \log K$$

Problem:

At 100° above the temperature calculated above for the formation of ammonia, calculate the equilibrium constant. Do the same for 100° below that temperature. Since free energy is dependent upon the temperature of a system, ΔS and ΔH , it is important to understand the relation between the signs of these terms.

ΔH°	ΔS°	ΔG°	Description
-	+	-	Always spontaneous
+	-	+	Always nonspontaneous
-	-	+ or -	Spontaneous at low T
nonspontaneous at high T			
+	+	+ or -	Nonspontaneous at low T
spontaneous at high T			

Problem:

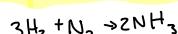
Why is the reaction $2\text{HgO} \rightarrow 2\text{Hg} + \text{O}_2$ possible using a Bunsen burner while $\text{SO}_2 \rightarrow \text{S} + \text{O}_2$ is not? Hint: At what temperature will HgO and SO_2 decompose?

Extra credit

Posted from <<http://fp.academic.venturacollege.edu/deliver/chem1b/notes/Chap20new.htm>>

as temp goes up ↓ down does it become more or less spontaneous

© 565K


$$\Delta G = \Delta H^\circ - T\Delta S^\circ$$

$$= -91.8 - 565K \times (-0.197) = 19.67$$

$$K_{\text{eq}} = e^{-\frac{\Delta G^\circ}{RT}}$$

$$= e^{-\frac{19.67}{8.314 \times 565}}$$

$$= 0.015$$

$$\Delta H^\circ = 2\Delta H_f^\circ \text{NH}_3 - 3\Delta H_f^\circ \text{H}_2 - \Delta H_f^\circ \text{N}_2$$

$$\Delta H^\circ = 2 \times -45.9 - 0$$

$$= -91.8 \text{ kJ/mol NH}_3$$

$$\Delta S^\circ = 2S_f^\circ \text{NH}_3 - 3S_f^\circ \text{H}_2 - S_f^\circ \text{N}_2$$

$$= 2 \times 193 - 3 \times 130.6 - 191.5$$

$$= -197.3 \text{ J/mol}$$

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$$

$$= -91.8 - 298(-0.197)$$

$$= 2 \times 26.7 - 3 \times 0 - 0$$

$$\Delta G^\circ = -33.09 \text{ } \leftarrow \text{not same} \rightarrow \Delta G^\circ = 53.4 \text{ kJ/mol}$$

extra credit) why not same?

$$\Delta G = \Delta H^\circ - T\Delta S^\circ$$

$$0 = \Delta H^\circ - T\Delta S^\circ$$

$$\Delta H^\circ = T\Delta S^\circ$$

$$T = \frac{\Delta H^\circ}{\Delta S^\circ} = \frac{-91.8 \text{ kJ/mol}}{-197.3 \text{ J/mol}} = 465 \text{ K}$$