

Studying Electrochemical Half-Cells and Half-Reactions

Tuesday, February 27, 2007

2:11 PM

Purpose: None... this is a demo, not an experiment.

Hazards: $\text{Pb}(\text{NO}_3)_2$ is toxic and CuSO_4 is an irritant.

Data:

1. Oxidation-Reduction Reactions

System	Observation
Zn-Cu system	Zinc turned black
Pb-Cu system	No change
Zn-Pb system	Zinc turned black

2. Electrochemical cells

System	Cell voltage
Zn-Cu	1.065
Fe-Cu	.681

Calculations:

1. Oxidation-Reduction Reactions

a. Zn-Cu System

Oxidation half-equation	$\text{Zn} \rightarrow \text{Zn}^{2+} + 2e^-$ $\text{Cu}^{2+} + 2e^- \rightarrow \text{Cu}$ $\text{Pb} + \text{Cu}^{2+} \rightarrow \text{Pb}^{2+} + \text{Cu}$	$E^0_{\text{oxid}} =$	0.76 V
Reduction half-equation	$\text{Zn} \rightarrow \text{Zn}^{2+} + 2e^-$ $\text{Pb}^{2+} + 2e^- \rightarrow \text{Pb}$ $\text{Zn} + \text{Pb}^{2+} \rightarrow \text{Zn}^{2+} + \text{Pb}$	$E^0_{\text{red}} =$	0.34 V
Net Equation		$E^0_{\text{net}} =$	1.1 V

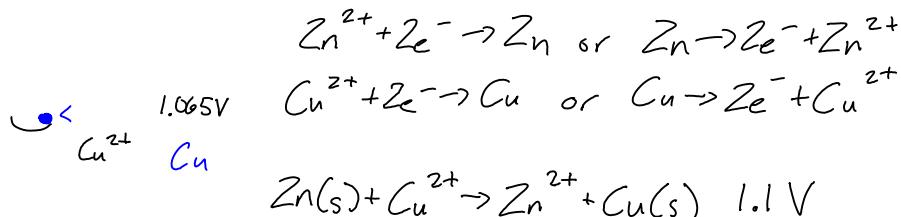
b. Pb-Cu System

Oxidation half-equation		$E^0_{\text{oxid}} =$	0.13 V
Reduction half-equation		$E^0_{\text{red}} =$	-0.34 V
Net Equation		$E^0_{\text{net}} =$	-0.21 V

c. Zn-Pb System

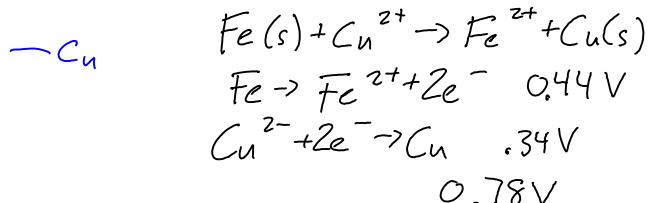
Zn ²⁺	Oxidation half-equation Zn → Zn ²⁺ + 2e ⁻	E ⁰ _{oxid} = 0.76 V
	Reduction half-equation Cu ²⁺ + 2e ⁻ → Cu	E ⁰ _{red} = -0.13
	Net Equation Zn → Cu + Zn ²⁺	E ⁰ _{net} = 0.63
		0.681 V

Fe-Cu system should be spontaneous because E⁰_{net} > 0. We also experimentally observed this reaction spontaneously taking place.


Pb-Cu system should not be spontaneous because E⁰_{net} < 0. Our observations confirmed this because we saw no reaction.

Zn-Pb system should be spontaneous because E⁰_{net} > 0. We observed a reaction confirming this prediction.

- d. Strength of Reducing Agent Lowest to Highest: Cu, Pb, Zn
- e. It is consistent because Cu²⁺=34V, Pb²⁺=-0.13V, and Zn²⁺=-0.76V
- f. Oxidation would be reverse order with Zn, Pb, Cu
- g. This is consistent with table one. The reverse reactions are oxidation and the reduction voltage can be changed from positive to negative.


2. Electrochemical Cells

a. Zn-Cu Electrochemical Cells

Our observed voltage was 1.065V while the calculated value was 1.1V

b. Fe-Cu Electrochemical Cells

Our observed voltage was .681V while the calculated voltage was .78V