Notes: 11.1 Sequences

Tuesday, April 10, 2007
7:24 PM

11.1 Sequences
1. Intro
A sequence is any set of numbers in some order
{a1, a, a3, ... An}
{an}
An

{1,2,3,4,5,.....n} {n} {an} where an=n

{1/2,2/3,3/4, ....n/n+1....} n=n/n+1

{1/3,1/4,1/6 ...1/2n, ...} n=1/2n

{3/6,-4/25, 5/125, -6/625, 7/3125... n} n=[(-1)™Y(n+2+)]/5" *(-1)"*!= alternating sequence
{1,1,2,3,5,8,....} an=an-1+an-2 fibonacci series
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a. If{an}>P
{bn}->Q

lim | -_n_ ) = {um - )m \_,) -
NP>\ 7Zn N+ | el
b. Lim {can} = clim{an}

c. Lim{anxbn}=lim{an}xlim{bn}=PxQ

d. Lim {an/bn} = Lim{an}/Lim{bn}

[im {af}’ {lv; {a,‘}P: IDP

n->°

Theorem: Squeeze Theorem: For {an}, {bn}, {cn} if an<bn<cn then if {an} -> L and {cn} -> L then lim n->infinity {bn} =L
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4. Theorem: llVV\ (an {:0 #\'X\ ((m ﬁr\ = 6

nooes n-y &=
5. More definitions

a. Definition: {an} is increasing if an«1>an

b. Definition: {an} is decreasing if an«1<an

c. Definition: {an} is bounded above if a,< M for all n

d. Definition: {an} is bounded below if a, >P

e. Definition: {an} is bounded below and bounded above, then {a,} is a bounded sequence

f. Theorem: Every bounded monatomic sequence is convergent.
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Part I: Show the sequence is increasing

Ln=l o2
2. assume n= Kk P,,I{ows '{'A.r_ Same (incfc’a\sa)
Apsy >al<
ApaF2 > a, +2
1,0\(:"(+2 > 1‘ak+2

ak"'z > aki—(

3 dedvee Hhat AL, > a, Toral nz|

n=

Part Il: Boundedness

. noe Q, :\E< =
Zc assume thadt aq, <3
a, +2 < 2
JaZ2 <5
A <E
Clklclvl <E<3
Goas S 3
By theorem, it is bounded and monotonic and is thus convergent

Part Il: What is the limit?

We know the limit exists let it be L

l\mﬂ' Qv\ = L

n->oe

Note l\w\ 0Ln+l - }lm wqﬂ+2 <_§$Md-f¢ -bo+A €IHL§
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