

## Notes: 11.1 Sequences

Tuesday, April 10, 2007  
7:24 PM

### 11.1 Sequences

#### 1. Intro

A sequence is any set of numbers in some order

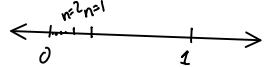
$$\{a_1, a_2, a_3, \dots, a_n\}$$

$$\{a_n\}$$

$$a_n$$

- $\{1, 2, 3, 4, 5, \dots, n\}$   $\{a_n\}$  where  $a_n = n$
- $\{1/2, 2/3, 3/4, \dots, n/(n+1), \dots\}$   $n = n/(n+1)$
- $\{1/2, 1/4, 1/6, \dots, 1/(2n), \dots\}$   $n = 1/(2n)$
- $\{3/6, -4/25, 5/125, -6/625, 7/3125, \dots, n\}$   $n = [(-1)^{n+1}(n+2+)]/5^n$   $\ast (-1)^{n+1}$  = alternating sequence
- $\{1, 1, 2, 3, 5, 8, \dots\}$   $a_n = a_{n-1} + a_{n-2}$  fibonacci series

#### 2. Plot

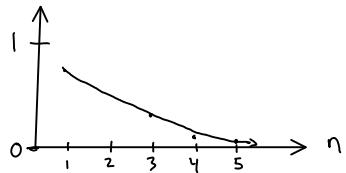


$$a_n = \frac{1}{2n} \quad a_4 = \frac{1}{8}$$

$$a_1 = \frac{1}{2} \quad a_5 = \frac{1}{10}$$

$$a_2 = \frac{1}{4}$$

$$a_3 = \frac{1}{6}$$



$$\text{Consider } a_n = \frac{n}{n+1}$$

$$a_1 = \frac{1}{1+1} = \frac{1}{2} \quad a_6 = \frac{6}{7}$$

$$a_2 = \frac{2}{3} \quad a_7 = \frac{7}{8}$$

$$a_3 = \frac{3}{4} \quad \text{so} \quad \lim_{n \rightarrow \infty} \frac{n}{n+1} =$$

$$a_5 = \frac{5}{6}$$

$$\text{alternatively } \div \text{ top \& bottom by } n$$

$$a_n = \frac{n}{n+1} = \frac{1}{1 + \frac{1}{n}} \rightarrow \frac{1}{1+0} = 1$$

technically

when  $a_n$  has a limit  
for every  $\epsilon > 0 \exists \text{ an } N \ni |a_n - L| < \epsilon \text{ for all } n > N$

$\star \exists$  there exists

$\rightarrow$  such that

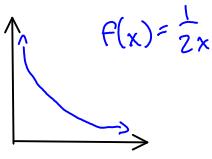
$\forall$  for all

$\therefore$  therefore

Also, we may be able to replace  $a_n$  with a function  $f(x)$

Also, we may be able to replace  $a_n$  with a function  $f(x)$   
 such that  $f(n) = a_n$   
 $\{a_n\}_{n=1}^{\infty} = \{f(x)|_n\}_{n=1}^{\infty}$

ex)  $a_n = \frac{1}{2^n}$   $f(x) = \frac{1}{2^x}$   $f(n) = \frac{1}{2^n}$



3. Properties

a. If  $\{a_n\} \rightarrow P$

$\{b_n\} \rightarrow Q$

$$\lim_{n \rightarrow \infty} \left( \frac{1}{2^n} - \frac{n}{n+1} \right) = \lim_{n \rightarrow \infty} \left( \frac{1}{2^n} \right) - \lim_{n \rightarrow \infty} \left( \frac{n}{n+1} \right) = 0 - 1 = -1$$

b.  $\lim \{ca_n\} = c \lim \{a_n\}$

c.  $\lim \{a_n \times b_n\} = \lim \{a_n\} \times \lim \{b_n\} = P \times Q$

d.  $\lim \{a_n/b_n\} = \lim \{a_n\} / \lim \{b_n\}$

$$\lim_{n \rightarrow \infty} \{a_n^P\} = \lim_{n \rightarrow \infty} \{a_n\}^P = P^P$$

Theorem: Squeeze Theorem: For  $\{a_n\}$ ,  $\{b_n\}$ ,  $\{c_n\}$  if  $a_n < b_n < c_n$  then if  $\{a_n\} \rightarrow L$  and  $\{c_n\} \rightarrow L$  then  $\lim_{n \rightarrow \infty} \{b_n\} = L$

Examples:

ex)  $a_n = \frac{n!}{n^n}$   $a_1 = \frac{1}{1}$   
 $a_2 = \frac{2}{2}$   
 $a_3 = \frac{6}{9}$   
 $a_4 = \frac{24}{625}$

$$\frac{n!}{n^n} = \frac{1}{n} \underbrace{\left( \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \cdot \frac{n-1}{n} \right)}_{0 < 1} n$$

$$0 < a_n < \frac{1}{n}$$

$$\lim_{n \rightarrow \infty} \frac{n!}{n^n} = 0 \text{ by squeeze theorem}$$

4. Theorem:  $\lim_{n \rightarrow \infty} |a_n| = 0$  then  $\lim_{n \rightarrow \infty} a_n = 0$

5. More definitions

a. Definition:  $\{a_n\}$  is increasing if  $a_{n+1} > a_n$

b. Definition:  $\{a_n\}$  is decreasing if  $a_{n+1} < a_n$

c. Definition:  $\{a_n\}$  is bounded above if  $a_n < M$  for all  $n$

d. Definition:  $\{a_n\}$  is bounded below if  $a_n > P$

e. Definition:  $\{a_n\}$  is bounded below and bounded above, then  $\{a_n\}$  is a bounded sequence

f. Theorem: Every bounded monotonic sequence is convergent.

#62 let  $a_1 = \sqrt{2}$   $a_{n+1} = \sqrt{2+a_n}$

$$\begin{aligned}a_1 &= \sqrt{2} \\a_2 &= \sqrt{2+\sqrt{2}} \\a_3 &= \sqrt{2+\sqrt{2+\sqrt{2}}}\end{aligned}$$

Part I: Show the sequence is increasing

$$\begin{aligned}1. \ n=1 \quad a_1 &= \sqrt{2} \\2. \ \text{assume } n=k \text{ follows the same (increase)} \quad a_{k+1} &> a_k\end{aligned}$$

$$\begin{aligned}a_{k+1} + 2 &> a_k + 2 \\ \sqrt{a_{k+1} + 2} &> \sqrt{a_k + 2} \\ a_{k+2} &> a_{k+1}\end{aligned}$$

$$3. \ \text{deduce that } a_{k+1} > a_n \text{ for all } n \geq 1$$

Part II: Boundedness

$$1. \ \text{note } a_1 = \sqrt{2} < 3$$

$$2. \ \text{assume that } a_k < 3$$

$$a_k + 2 < 3 + 2$$

$$\sqrt{a_k + 2} < \sqrt{5}$$

$$a_{k+1} < \sqrt{5}$$

$$a_{k+1} < \sqrt{5} < 3$$

$$a_{n+1} < 3$$

By theorem, it is bounded and monotonic and is thus convergent

Part II: What is the limit?

We know the limit exists let it be L

$$\lim_{n \rightarrow \infty} a_n = L$$

$$\text{Note } \lim_{n \rightarrow \infty} a_{n+1} = \lim_{n \rightarrow \infty} \sqrt{a_n + 2} \quad \leftarrow \text{square both sides}$$

$$\lim_{n \rightarrow \infty} a_{n+1}^2 = \lim_{n \rightarrow \infty} (2 + a_n)$$

$$= 2 + \lim_{n \rightarrow \infty} a_n$$

$$L^2 = 2 + L$$

$$L^2 - L - 2 = 0$$

$$(L + 1)(L - 2) = 0$$

$$L = \cancel{-1} \text{ or } 2$$