

Notes 10/17

Tuesday, October 16, 2007
7:41 PM

Notes 1017

- 2

Audio recording started: 10:08 AM Wednesday, October 17, 2007

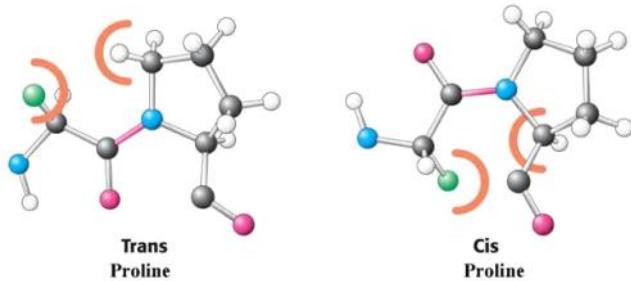
Lipids: Classification

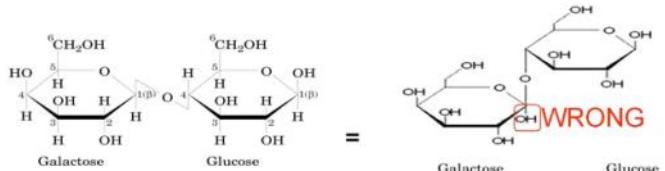
Oct. 17, 2007

Problem Set #5

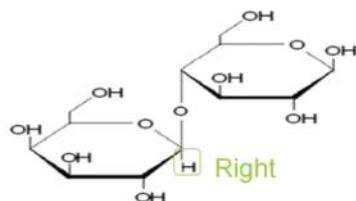
- Voet and Voet, 3rd edition
- Chapter 2 Problems 1, 3, 5, 8, 10, 12, 14,
- Chapter 4 Problems 1, 2, 3, 4, 5, 8, 10,
- Chapter 8 Problems 1, 4, 5, 6, 7, 12, 13, 18
(You don't need to use numbers to answer #18. Just compare them to each other.), 22
- Chapter 9 Problems 3, 4, 6, 7, 12, 13
- Chapter 10 Problems 1, 8,

Today's Overview

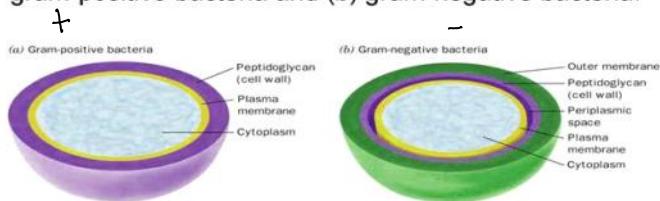

- Quick discussion of conformation vs. configuration
- Finish our focused discussion of carbohydrates
 - Lactose (mistaken identity)
 - Peptidoglycan
- Fats


Proline's **configuration** about peptide bond (slide from Oct. 8, 2007)

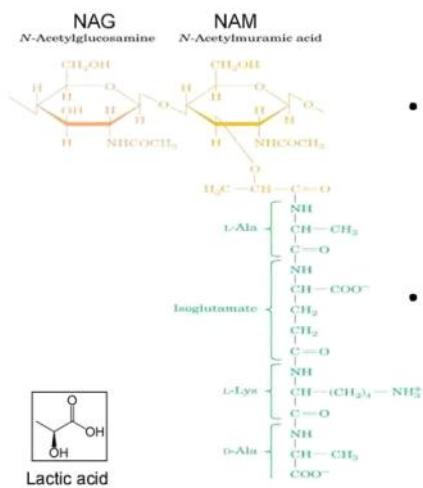
Proline has a fixed phi angle. We describe its R-group's arrangement in space as either the trans or cis configuration/conformation. For the other amino acids the arrangement in space is described as either the trans or cis conformation.


Cis trans is technically a confirmation not a configuration, but is sometimes losly called configuration

Lactose (slide 5 from 10/16/07)

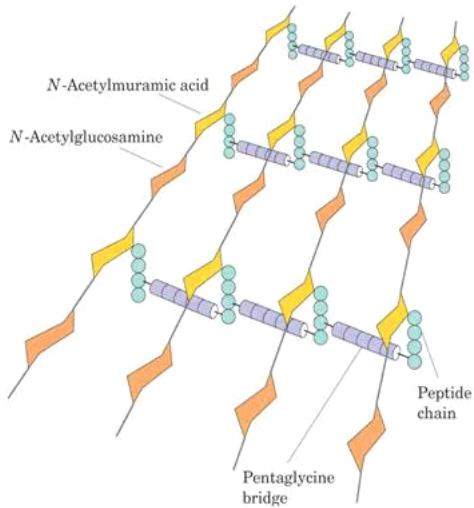

Changd 10/15 notes

Peptidoglycan (a.k.a. murein) is a polysaccharide that serves a structural role in bacterial cell walls


- Covalently linked polysaccharide and polypeptide chains form the peptidoglycan framework
- Medically significant because the cell wall is responsible for bacterial virulence
- Cell walls alone can induce disease symptoms in humans
- The thickness of the cell wall that encloses the plasma membrane distinguishes bacteria as either gram-positive or gram-negative

Schematic diagram comparing the cell envelopes of (a) gram-positive bacteria and (b) gram-negative bacteria.

- Gram-positive wall is about 250 angstroms *thicker* thick
- Gram-negative wall is about 30 angstroms *thinner* thick


Chemical structure of the repeating unit of peptidoglycan

- The polysaccharide portion is an alternating NAG and NAM linked beta(1-->4)
- NAM has a tetrapeptide linked by an amide bond to its lactic acid moiety

Don't need to know to draw entire thing on exam but should be able to identify components and it

Structure of the gram positive *Staphylococcus aureus* bacterial cell wall peptidoglycan

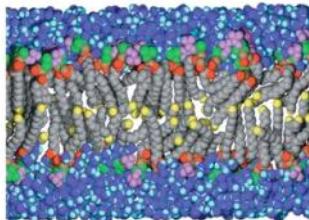
- Peptidoglycan chains form parallel layers that are cross-linked by a pentaglycine bridge
- The pentaglycine bridge extends from the terminal carboxyl group of one tetrapeptide to the epsilon-amino group of the K in the neighboring tetrapeptide

Lipids

- Triacylglycerols
- Glycerophospholipids
- Sphingolipids
- Cholesterol

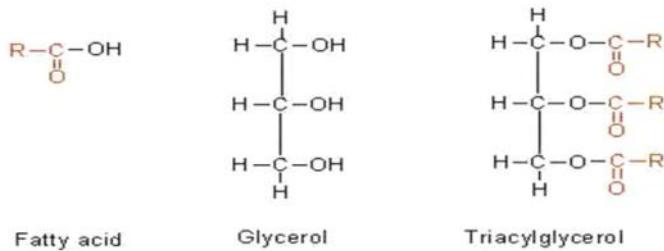

Lipids make up a very heterogeneous class of highly reduced biological compounds that consist of fats, oils, and waxes

- Biological functions
 - Energy storage
 - Membrane components
 - Protective coatings
 - Precursors to bile acids, hormones, vitamins, intercellular mediators
 - Insulation
 - Pulmonary surfactants
- Classification
 - Biological roles
 - Structural composition
- Some properties
 - Soluble in organic solvents (chloroform, methanol)
 - Very little (if any) solubility in water


Lipids play various biological roles

- Triacylglycerols are energy storage lipids
 - (a.k.a. triglycerides)
- Phospholipids, glycolipids, and cholesterol are membrane lipids

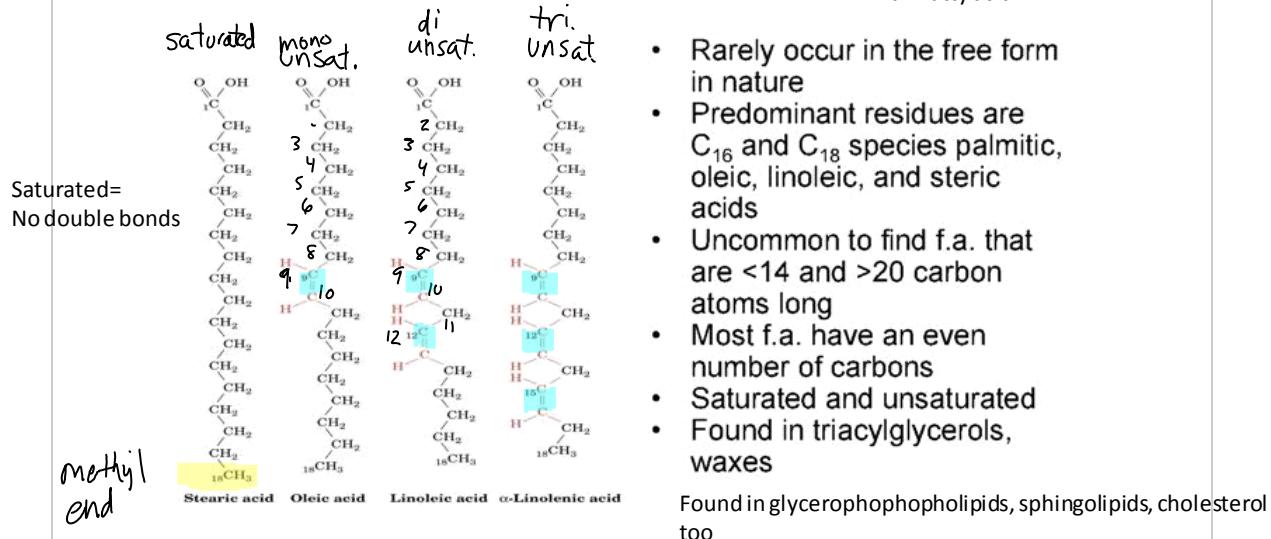
Triglycerol and triglycerides are same thing



Electron micrograph of adipocytes

Example of a lipid bilayer

Triacylglycerols are involved in energy storage in animals



- Nonpolar, water-insoluble, fatty acid triesters of glycerol
- Most abundant class of lipids

What is a fatty acid?

Fatty acids are carboxylic acids with long chain hydrocarbon side groups

f.a = fatty acid

Saturated fatty acids

C in chain

Symbol ^a	Common Name	Systematic Name	Structure	mp (°C)
<i>Saturated fatty acids</i>				
12:0	Lauric acid	Dodecanoic acid	CH ₃ (CH ₂) ₁₀ COOH	44.2
14:0	Myristic acid	Tetradecanoic acid	CH ₃ (CH ₂) ₁₂ COOH	52
16:0	Palmitic acid	Hexadecanoic acid	CH ₃ (CH ₂) ₁₄ COOH	63.1
18:0	Stearic acid	Octadecanoic acid	CH ₃ (CH ₂) ₁₆ COOH	69.6
20:0	Arachidic acid	Eicosanoic acid	CH ₃ (CH ₂) ₁₈ COOH	75.4
22:0	Behenic acid	Docosanoic acid	CH ₃ (CH ₂) ₂₀ COOH	81
24:0	Lignoceric acid	Tetracosanoic acid	CH ₃ (CH ₂) ₂₂ COOH	84.2

increasing

- Free to move about each C-C bond
- Assumes wide arrange of conformations
- Fully extended form is most energetically favorable
- Melting point increases with size

Do not have to memorize melting points

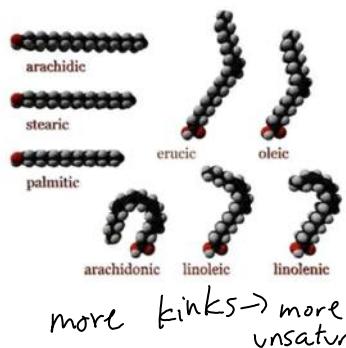
Know the fatty acids in the blue boxes, # of carbons, common name, system name, structure (basically everything in box)

All of these have 18C but differ by # of double bonds

Unsaturated Fatty Acids

Systematic name... need to give structure given it but don't need to know inverse.

Symbol ^a	Common Name	Systematic Name	Structure	mp (°C)
Unsaturated fatty acids (all double bonds are cis)				
16:1n-7	Palmitoleic acid	9-Hexadecenoic acid	<chem>CH3(CH2)6CH=CH(CH2)7COOH</chem>	-0.5
18:1n-9	Oleic acid	9-Octadecenoic acid	<chem>CH3(CH2)7CH=CH(CH2)8COOH</chem>	13.4
18:2n-6	Linoleic acid	9,12-Octadecadienoic acid	<chem>CH3(CH2)6(CH=CHCH2)2(CH2)6COOH</chem>	-9
18:3n-3	α-Linolenic acid	9,12,15-Octadecatrienoic acid	<chem>CH3(CH2)6(CH=CHCH2)3(CH2)6COOH</chem>	-17
18:5n-6	γ-Linolenic acid	6,9,12-Octadecatrienoic acid	<chem>CH3(CH2)6(CH=CHCH2)2(CH2)3COOH</chem>	
20:4n-4	Arachidonic acid	5,8,11,14-Eicosatetraenoic acid	<chem>CH3(CH2)8(CH=CHCH2)4(CH2)2COOH</chem>	-49.5
20:5n-3	EPA	5,8,11,14,17-Eicosapentaenoic acid	<chem>CH3CH2CH=CHCH2)5(CH2)2COOH</chem>	-54
22:6n-3	DHA	4,7,10,13,16,19-Docosahexenoic acid	<chem>CH3CH2CH=CHCH2)6CH2COOH</chem>	
24:1n-9	Nervonic acid	15-Tetraenoic acid	<chem>CH3(CH2)14CH=CH(CH2)10COOH</chem>	39


^aNumber of carbon atoms : number of double bonds. For unsaturated fatty acids, *n* is the number of carbon atoms, *n* - *x* is the number of carbon atoms, *n* - *x* is the number of that carbon atom counting from the methyl terminal (*ω*) end of the chain.

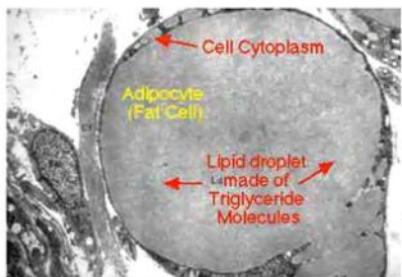
Source: Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., *Data for Biochemical Research* (3rd ed.), Chapter 8, Clarendon Press (1986).

- Double bonds are indicated in symbol and tend to occur at every third carbon toward the methyl terminus
- 18:1n-9 means that it is an 18 carbon fatty acid, there is one double bond, the double bond occurs after carbon #9
- 18:3n-3 means that is is an 18 carbon fatty acids, there are three double bonds, and the double bonds are located after carbons #15, 12, and 9

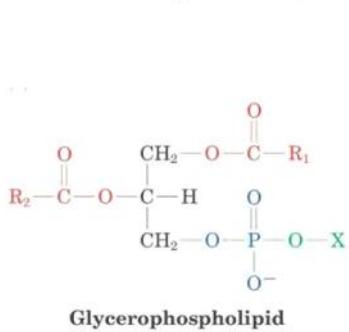
Need to know to decipher symbol

Unsaturated fatty acids

- Double-bond almost always cis configuration
- Rigid 30° bend restricts packing
- Reduced van der Waals interactions
- m.p. increases with increasing unsaturation
- Lard is solid, vegetable oil is liquid at R.T.


↑ De not study sentence possibly wrong

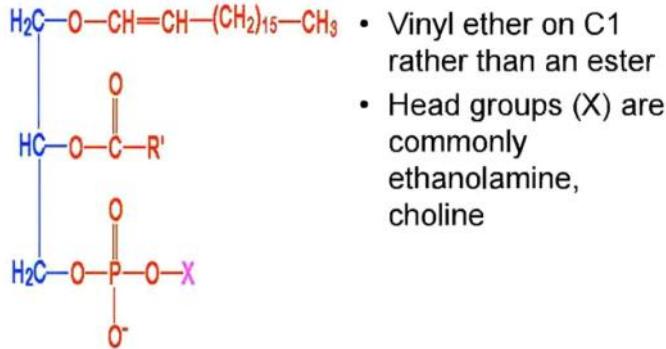
Example of a solid fat at room temperature


Now we can discuss triacylglycerols some more

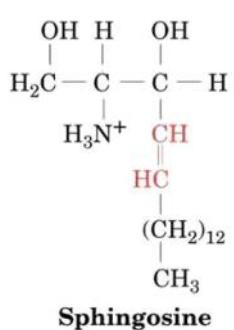
Triacylglycerols are efficient for energy storage

- Less oxidized than proteins and carbohydrates (more reduced)
- Stored in anhydrous form
- Provides 6X energy than glycogen
- Made and stored in adipocytes of animals
- Typical human can use stored fat to survive starvations for 2-3 months
- Glycogen only lasts a day

Glycerophospholipids


- A.k.a phosphoglycerides
- Major component of biological membranes
- Consist of a glycerol, two fatty acids (R_1 and R_2), and polar phosphoryl-X head group (usually alcohols)
- R_1 is usually a saturated C_{16} or C_{18} f.a. and R_2 is usually an unsaturated C_{16} to C_{20} f.a.

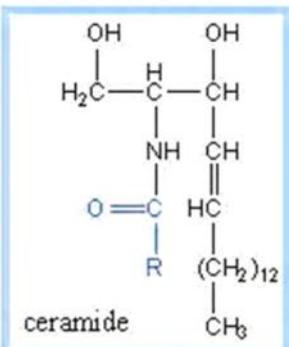
Common Classes of Glycerophospholipids


Name of X—OH	Formula of X	Name of Phospholipid
Water	—H	Phosphatidic acid
Ethanolamine	$-\text{CH}_2\text{CH}_2\text{NH}_3^+$	Phosphatidylethanolamine
Choline	$-\text{CH}_2\text{CH}_2\text{N}(\text{CH}_3)_3^+$	Phosphatidylcholine (lecithin)
Serine	$-\text{CH}_2\text{CH}(\text{NH}_3)\text{COO}^-$	Phosphatidylserine
myo-Inositol		Phosphatidylinositol
Glycerol	$-\text{CH}_2\text{CH}(\text{OH})\text{CH}_2\text{OH}$	Phosphatidylglycerol
Phosphatidylglycerol	$-\text{CH}_2\text{CH}(\text{OH})\text{CH}_2-\text{O}-\text{P}(\text{O})_2-\text{O}-\text{CH}_2-\text{CH}(\text{O})-\text{C}(=\text{O})-\text{R}_3$	Diphosphatidylglycerol (cardiolipin)

Need to recognize structure and components of highlighted ones. Do not need to draw from scratch.

Plasmalogens are a type of glycerophospholipid

Sphingolipids are also major membrane components



- Sphingolipids are derived from sphingosine

Know this structure

Not a fatty acid

The N-acyl fatty acid derivative of sphingosine is ceramide

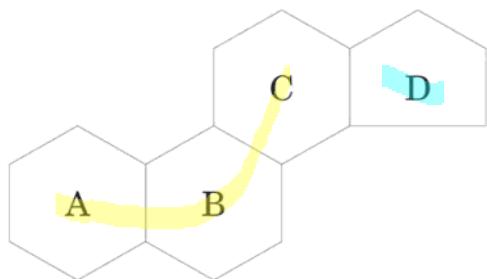
- Ceramides are the parent compounds of the more common sphingolipids
 - Sphingomyelins
 - Cerebrosides
 - Gangliosides

Common sphingolipids

- **Sphingomyelin** In myelin sheets of nerve cells
 - Ceramides + phosphocholine or phosphoethanolamine head group
 - Most common sphingolipid
 - Major component of myelin sheaths of nerve cells
- **Cerebrosides**
 - Ceramides + monosaccharide residue head group
 - Found in neuronal cell membranes of the brain and in the membranes of other tissues
- **Gangliosides**
 - Ceramide + oligosaccharides
 - Primarily components of cell-surface membranes and significant portion of brain lipids (6%)

Should be able to distinguish between these when given structure

Gangliosides are medically significant

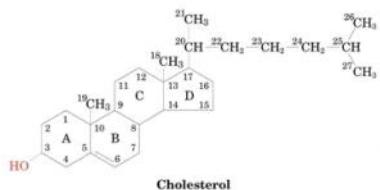


Neurons affected by Tay-Sachs

- Complex carbohydrate head groups act as specific receptors for certain pituitary hormones
- Receptors for bacterial protein toxins like cholera toxin
- Thought to play an important role in cell growth and differentiation
- May be involved in carcinogenesis
- Tay-Sachs disease is a hereditary sphingolipid (ganglioside) storage disease marked by fatal neurological deterioration

- Lipids we have discussed so far:
 - Triacylglycerols
 - Glycerophospholipids
 - Sphingolipids
- Now let's discuss cholesterol

Steroids are derivatives of a rigid four fused ring structure



Cyclopentanoperhydronanthrene

Should know this long name

Cholesterol is the most abundant steroid in animals

- Major component of animal plasma membranes
- Occurs in membranes of subcellular organelles to a lesser extent
- Flexible hydrophobic tail
- **Polar head**
- Weakly amphipathic
- Rigid
- Abundant in blood plasma lipoproteins

Will not have to draw but should be able to identify

Cholesterol serves many functions

- Precursor to bile acids, which aid in lipid digestion
- Precursors to steroid hormones
- Major component of plasma membranes
- Minor component of subcellular organelles