

Notes 10/24

Wednesday, October 24, 2007
9:59 AM

Notes 1024

Audio recording started: 10:00 AM Wednesday, October 24, 2007

Enzymes: Introduction, Rates of Reactions

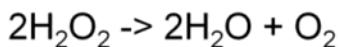
Oct. 24, 2007

Intro to Enzymes

- What is an enzyme?
- Properties
- Classes (Nomenclature)
- Coenzymes

- Organisms must be able to catalyze reactions efficiently and selectively

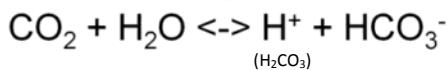
What are Enzymes?


- Proteins (sometimes RNA)
- Catalyze metabolic rxns
- For example: Oxidized form of carbon to more reduced form
- $6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2(\text{g})$. glucose <- photosynthesis in plants

- Living systems use enzymes to accelerate and control the rates of vitally important rxns

- Catalytic activity depends on native conformation of protein.
- Catalytic activity is lost if protein is denatured or degraded.
- Primary, secondary, tertiary, and quaternary are important for activity.

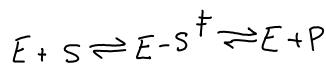
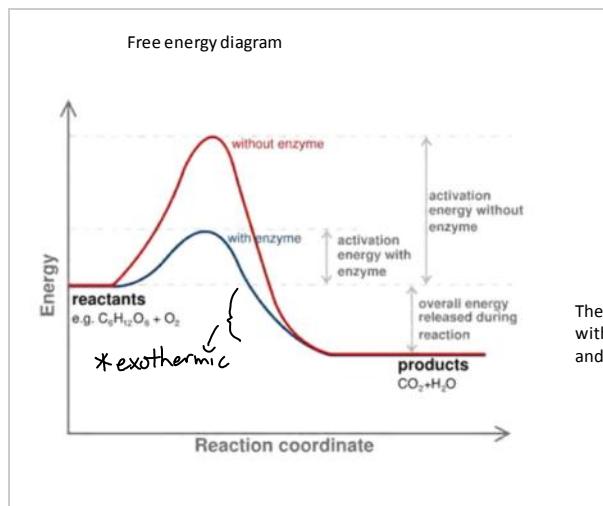
More examples


Catalase

Catalase

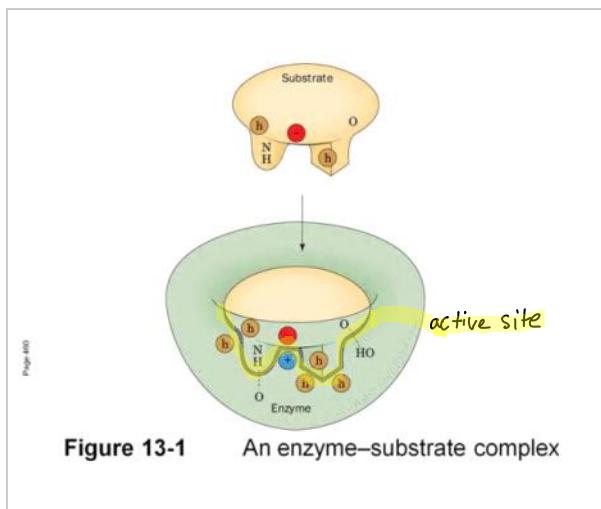
- Peroxiomes of aerobic cells
- Protects cells from H_2O_2
- Catalase is a tetramer (4 polypeptides)
- 1 catalase can break 40 million times in 1 second

Carbonic anhydrase

Carbonic anhydrase

- Monomer; metalloenzyme (Zinc 2^{+})
- Important in stomach, pancreas, kidney, red blood cells
- Converts CO_2 gas to carbonic acid which can travel through blood
- 1 carbonic anhydrase can process 1 million reactions per second


Properties of Enzymes

1. Higher rxn rates
2. Milder rxn conditions
 - physiological pH and temperature
3. Greater rxn specificity
 - Recognize specific reactants and make specific products
 - High degree of stereospecificity
4. Capacity for regulation
 - Regulate enzyme amount and reactivity
 - Regulate by phosphorylation, glycosylation

$E \rightarrow$ enzyme
 $S \rightarrow$ substrate
 $P \rightarrow$ product

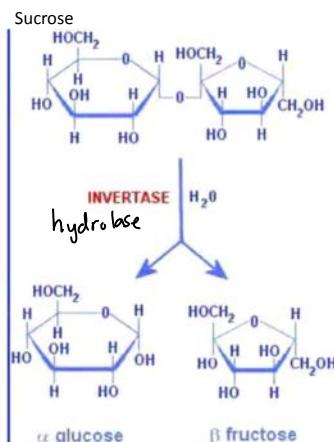
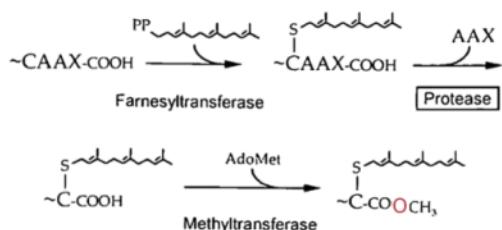
Thermodynamics of the system remains the same with or without catalyst. Same energy starting point and same energy needed/released.

- Active site:
 - Pocket
 - Surface is lined with amino acids that react with the substrate
 - Pocket provides what we call a microenvironment that favors a reaction energetically

Need to know these:

Classes of Enzymes

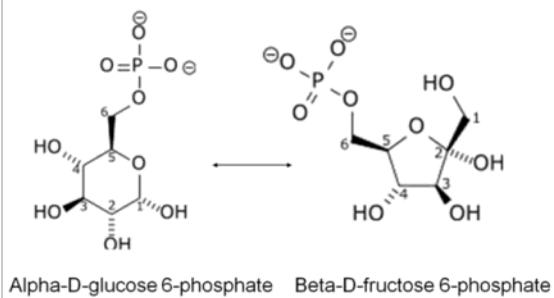
- Enzymes are classified based on the reaction they catalyze.
- Enzymes catalyze reactions in either direction depending on which is thermodynamically favored



1. **Oxidoreductases**--- oxidation-reduction reactions
 ex: Catalase
2. **Transferases**-- transfers functional groups.
3. **Hydrolases**--hydrolysis reactions
 ex: protease
4. **Lyases**
 a) group elimination to change a single bond to a double bond
 b) breaking of a single bond to form 2 products, one of which has a new double bond.
5. **Isomerases**-- isomerization
6. **Ligases**-- bond formation coupled to ATP hydrolysis

4 levels of classification (by Enzyme Commission E.C.)

Catalase E.C.1.11.1.6

*just need to know that this naming exist.


Correction from 10/23 Notes:

- Invertase is a hydrolase.
 - More technical name is beta-fructosidase
- "inverted" sugar refers to broken down sucrose of glucose and fructose because when broken down it becomes a syrupy mixture (bees do this naturally to make honey)
- Glycosidase
- Used in industry
- Yeast
- Humans have sucrase in the small intestine
- To detect sucrose, use invertase to break down then Tollen's Reagent or Benedict's solution to detect glucose.

Glucose isomerase

- Enzymes sometimes work by themselves, other times need "sidekick" called a cofactor
- Cofactor can be
 - Inorganic ion (Fe²⁺, Mg²⁺, Mn²⁺, Zn²⁺)
 - Coenzyme - organic or organometallic molecule
 - When cofactor is tightly or covalently bonded to protein it is considered a prosthetic group
 - Carbonic anhydrase uses Zn²⁺
 - Holoenzyme
 - Protein part is apoenzyme or apoprotein
- Lipid Bilayers
 - Fluid Mosaic Model... plasma membrane is fluid, not static
 - Lateral diffusion
 - Transverse diffusion (flip-flop)
 - Rare
 - Dive into hydrophobic region to go to other side