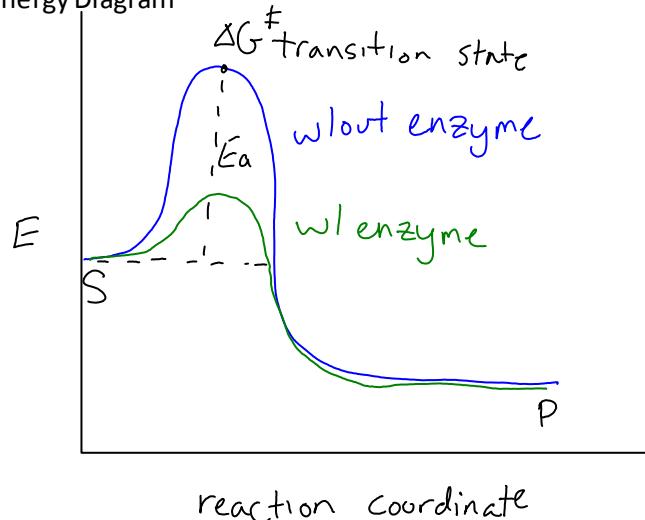


Notes 10/26

Friday, October 26, 2007
10:00 AM

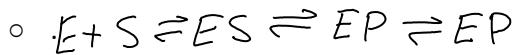
Notes 1026

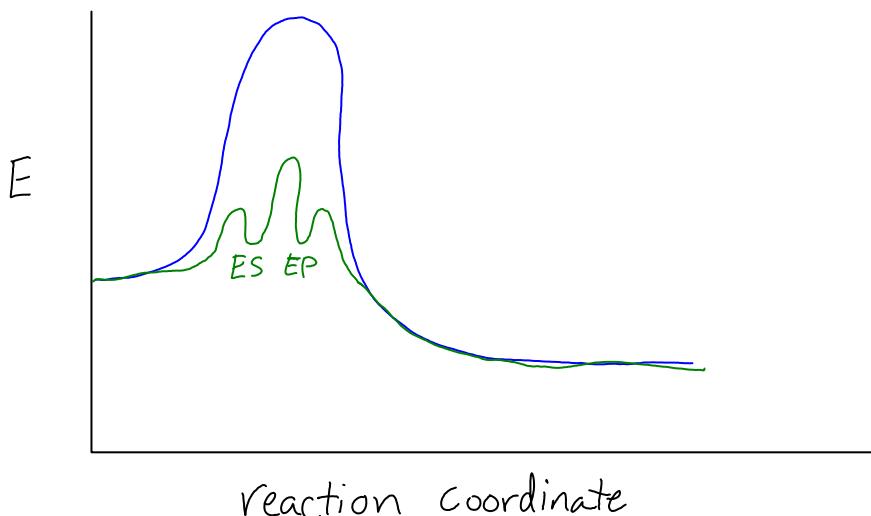

Audio recording started: 10:01 AM Friday, October 26, 2007

Quiz Expectation:

- Lipid linked vs lipid proteins
- Classify enzyme reactions
- Energy diagrams
- Kinetics

- Life depends on enzymes
- Enzymes effect reaction rates, not equilibrium
- STC, 298K, 1atm, pH 7
- ΔG^0 biochemical standard free E change
- $E + S \rightleftharpoons ES \rightleftharpoons EP \rightleftharpoons EP$
 $S \rightleftharpoons P$


- Energy Diagram


- E barrier
 - Alignment of reacting group
 - Formation of transient unstable charge
 - Bond rearrangements
 - Other transformation
- For a reaction to go, the molecule must overcome this ΔG^{\ddagger}
- What is the source of E?
 - Chemical reaction taking place substrate + E's functional groups (specific amino acids side chains,

metal ion, coenzyme)

- Binding $E = \Delta G_B$
- Binding E (ΔG_B) is a major source of free enzyme used by the enzyme to lower the E_a (ΔG^\ddagger) of the reaction.
- This same ΔG_B gives enzyme specificity
- A higher E_a means that the reaction is slower
- Energy can come from heat; however, this can denature enzymes
- Enzyme accelerates interconversion of Substrate to Product
- Equilibrium point is unchanged.

reaction intermediates

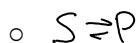
- Overall reaction rate is determined by rate limiting step
- Rate Limiting Step = the step with highest E_a

- Reaction Rates + Equilibria have precise thermodynamic definitions.

- Equilibrium constant K_{eq} or K

○ $K_{eq} = \frac{[P]}{[S]}$

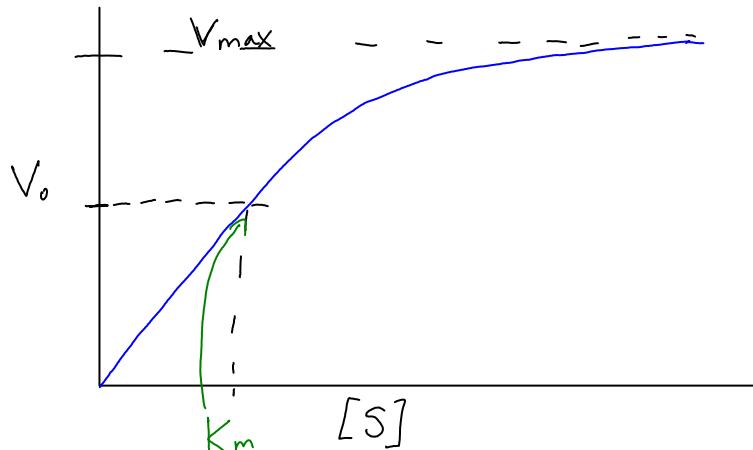
- From thermodynamics we can relate $K'_{eq} + \Delta G'^0$


- $\Delta G'^0 = -RT \ln K'_{eq}$

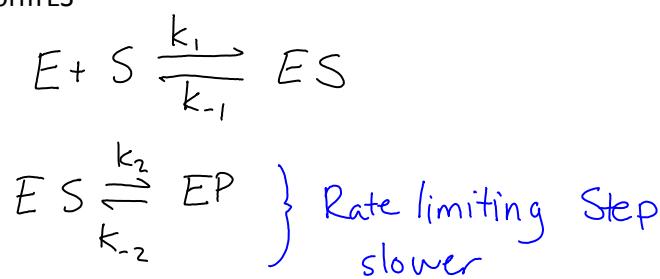
- $R = 8.315 \text{ J/molK}$

- $T = 298 \text{ K} (25^\circ \text{C})$

- K'_{eq} is directly related to the overall standard free E change for the reaction


- Large $\Delta G'^0$ = favorable reaction equilibrium

$v = k [S]$ 1st order reaction


- K value is defined under standard state conditions
 - The units of $k = \text{s}^{-1}$

- Example:
 - $\cdot V = 0.03 \text{ s}^{-1} [\text{S}]$
 - ◆ This means 3% of available substrate will be converted to P in 1 second.
 - When $k=2,000$
 - ◆ This means all of the substrate becomes product in less than a second
- 2nd order reaction:
 - K is a 2nd order rate constant, units are $\text{M}^{-1}\text{s}^{-1}$ (M =molarity, s =seconds)
 - $V=k[\text{S}_1][\text{S}_2]$
- Transition State Theory allows us to relate the rate constant to ΔG^\ddagger
 - $\cdot k = \frac{K T}{h} e^{-\Delta G^\ddagger / RT}$
 - K =bollzmann constant
 - h =Plank's constant
 - A lower ΔG^\ddagger means a higher k + vice versa.
- Enzyme kinetics
 - The central approach to understanding enzyme catalyzed is to study the rate of the reaction + how it changes in response to changes in experimental parameters.
- Substrate concentration effects the rate of enzyme catalyzed reactions
- $[\text{S}]$ changes during the course of a reaction
- Initial rate (initial V): $[\text{S}] \gg [\text{E}]$

Michaelis constant (K_m) The $[\text{S}]$ where $V_0 = 1/2V_{\text{max}}$

- Michaelis - Menten in 1913
 - Postulated the enzyme 1st combines reversibly with a substrate to form ES

Michaelis - Menten

Michalis-Menten equation

$$\cdot V_o = \frac{V_{max} - [S]}{K_m + [S]}$$