

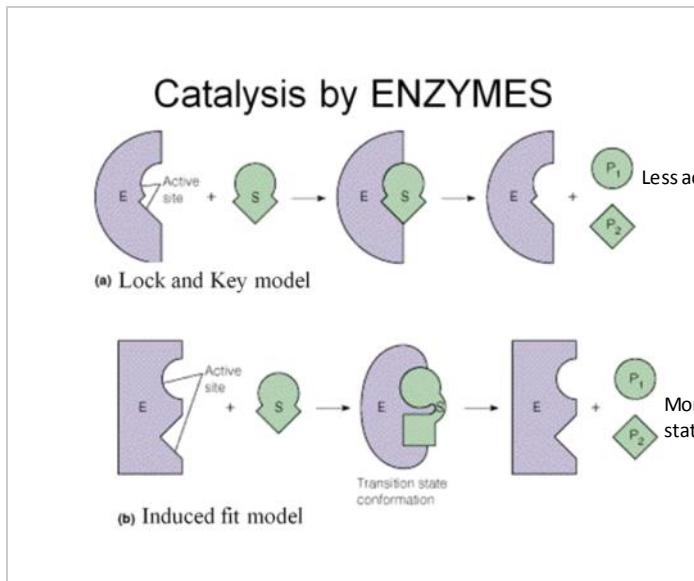
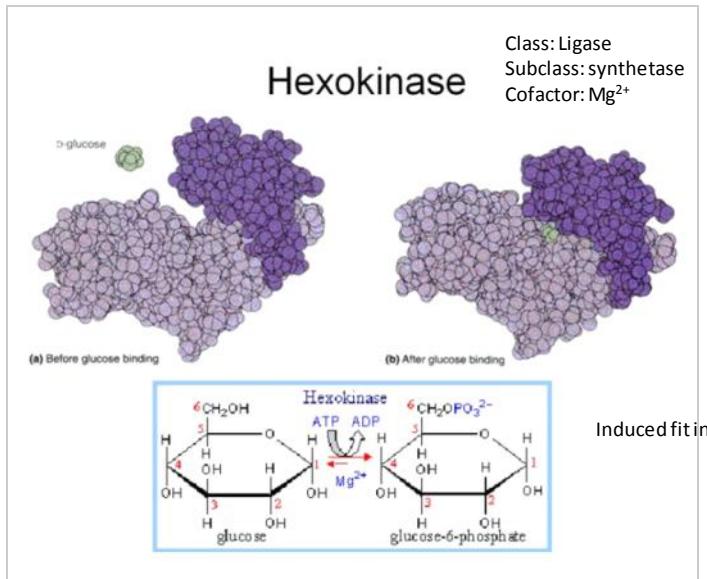
Notes 10/29

Monday, October 29, 2007
9:01 AM

Notes

Audio recording started: 9:01 AM Monday, October 29, 2007

ΔG - 209K, 1atm, 1M
 ΔG^0 (biochemical free energy change) - 209K, 1atm, pH 7.0

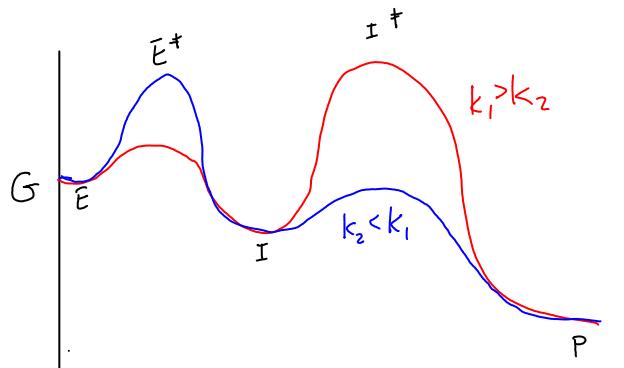


Contributors to $\Delta G^\ddagger(Ea)$

- Change in entropy
- Solvation shell of H-bonded water
- Distortion of substrates
- Alignment of catalytic functional groups

Benefits of binding to an E

- Entropy reduction
- Align substrates and reactive functional groups
- Desolvation



Mechaelis-Menten

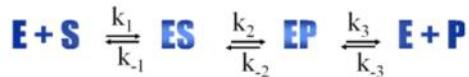
$$V_0 = \frac{V_{\max}[S]}{K_m + [S]}$$

V_0 = initial rate/velocity

Assume steady state

Steady state: refers to analysis of initial rates

The Kinetics of Enzyme Catalysis



the simplest enzyme catalyzed rxn-

single substrate \Leftrightarrow single product

To simplify even more, assume:

1. ES and EP are identical, call ES
2. Reverse rxn, $E + P \rightarrow ES$, is insignificant

$$V_0 = k_2 [ES]$$

$[E_t]$ = total enzyme concentration
 Free enzyme = $[E_t] - [ES]$

Consider that at very high $[S]$, $[ES]$ is negligible to $[S]$.

Rate of $[ES]$ formation = $k_1([E_t] - [ES])[S]$

Rate of $[ES]$ breakdown = $k_{-1}[ES] + k_2[ES]$

$[ES]$ is constant since we are assuming steady state

$$K_1([E_t] - [ES])[S] = k_{-1}[ES] + k_2[ES]$$

Need to know how to derive this equation

Solve the equation

$$K_1[E_t][S] - K_1[ES][S] = (k_{-1} + k_2)[ES]$$

$$K_1[E_t][S] = (k_{-1} + k_2)[ES] + k_1[ES][S]$$

$$K_1[E_t][S] = (k_1[S] + k_{-1} + k_2)[ES]$$

SOLVE FOR $[ES]$

$$[ES] = \frac{k_1[E_t][S]}{k_1[S] + k_{-1} + k_2}$$

$$[ES] = \frac{[E_t][S]}{[S] + (k_2 + k_{-1})/k_1}$$

$$K_m = (k_2 + k_{-1})/k_1$$

$$[ES] = \frac{[E_t][S]}{[S] + K_m}$$

$$\frac{V_0}{K_2} = \frac{[E_t][S]}{[S] + K_m}$$

$$V_0 = k_2 [ES]$$

$$V_0 = \frac{k_2 [E_t][S]}{K_m + [S]}$$

$$V_0 = \frac{V_{max} [S]}{K_m + [S]}$$

$$\text{When } V_0 = \frac{V_{max}}{2}$$

$$\frac{V_{max}}{2} = \frac{V_{max}[S]}{K_m + [S]}$$

Limitations of Michaelis-Menton equation:

$$\overline{2} = K_m + [S]$$

Solve K_m

$$K_m + [S] = 2[S]$$

$$K_m = [S] \text{ when } V_o = \frac{1}{2} V_{max}$$

Limitations of michaelis-menten equation:

1. Doesn't show us how many steps
2. Doesn't show us rates of each step
3. Doesn't show us what chemistry is involved

Calculations based on Michaelis-Menten equation

If the enzyme phosphatase has $K_m = 2.0 \times 10^{-4} \text{ M}$ and its substrate p-nitrophenyl phosphate is present at $5.0 \times 10^{-4} \text{ M}$, find the rate of reaction a) as a fraction of V_{max} and b) if $V_{max} = 5.0 \times 10^{-8} \text{ M.s}^{-1}$

a) calculating v_o as a fraction of V_{max} .

$$\frac{V_o}{V_{max}} = \frac{[S]}{K_m + [S]}$$
$$\frac{5 \times 10^{-4}}{(2.0 + 5.0) \times 10^{-4}}$$
$$= 0.71$$

b) calculating v_o for a given value of $V_{max} = 5.0 \times 10^{-8} \text{ M.s}^{-1}$

$$V_o = 0.71 \times V_{max}$$
$$V_o = 0.71 \times 5.0 \times 10^{-8} \text{ M.s}^{-1}$$
$$= 3.5 \times 10^{-8} \text{ M.s}^{-1}$$

If glucosidase has $K_m = 6.0 \times 10^{-5} \text{ M}$, what value of $[S]$ is needed to get a) $v_o = 0.75 V_{max}$

b) $v_o = 4.0 \times 10^{-8} \text{ M.s}^{-1}$ given $V_{max} = 2.0 \times 10^{-8} \text{ M.s}^{-1}$

a) $0.75 = \frac{[S]}{K_m + [S]}$

$$0.75(K_m + [S]) = [S]$$

$$0.75K_m = 0.25[S]$$

$$[S] = 3K_m$$

$$[S] = 1.8 \times 10^{-4} \text{ M}$$

b) $\frac{4.0 \times 10^{-8}}{2.0 \times 10^{-8}} = \frac{[S]}{K_m + [S]}$

$$0.20(K_m + [S]) = [S]$$

$$0.20K_m = 0.80[S]$$

If $[S] = 0.5 K_m$, what is v_o expressed as a fraction of V_{max} ?

$$\frac{v_o}{V_{max}} = \frac{[S]}{K_m + [S]}$$

$$= \frac{0.5 K_m}{K_m + 0.5 K_m}$$

$$0.33 V_{max}$$

If $\frac{v_o}{V_{max}} = 0.86$, what is $[S]$, expressed as a multiple of K_m ?

$$0.86 = \frac{[S]}{K_m + [S]}$$

$$0.86(K_m + [S]) = [S]$$

$$= 7.1 K_m$$

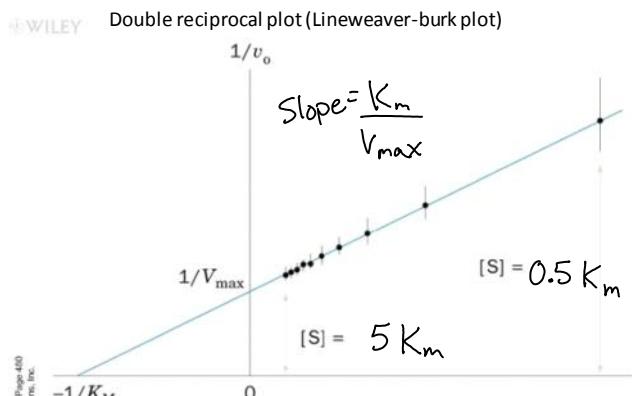


Figure 14-9 A double reciprocal (Lineweaver-Burk) plot.

$$\frac{1}{V_o} = \frac{V_{max}[S]}{K_m + [S]}$$

$$\frac{1}{V_o} = \frac{K_m + [S]}{V_{max}[S]}$$

$$\frac{1}{V_o} = \frac{K_m}{V_{max}[S]} + \frac{1}{V_{max}}$$

lineweaver-burk equation