

Glycolysis

Nov. 16, 2007

Glycolysis

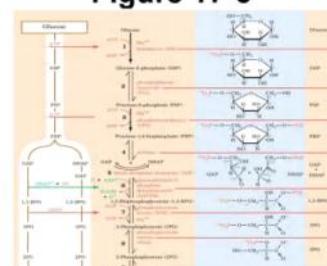
Nov. 16, 2007

Announcements

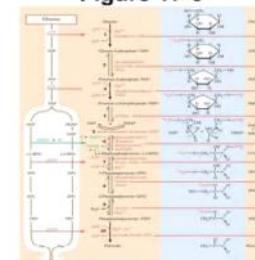
- Glycolysis and TCA handouts available
- Midterms are available
 - Regrades
 - Key
 - Feedback
- No class, discussion, office hours
Thurs. and Fri. next week
- No quiz next week

Announcements

- Glycolysis and TCA handouts available
- Midterms are available
 - Regrades
 - Key
 - Feedback
- No class, discussion, office hours
Thurs. and Fri. next week
- No quiz next week


Overview

- Glycolysis
 - Pick up where we left off
 - Fates of pyruvate
 - Closer look at each step
 - Regulation and control


Overview

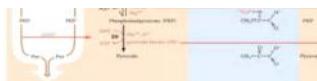

- Glycolysis
 - Pick up where we left off
 - Fates of pyruvate
 - Closer look at each step
 - Regulation and control

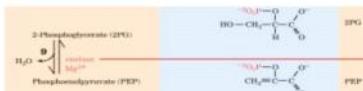
Figure 17-3

Figure 17-3

4

Figure 17-3

Figure 17-3


5

5

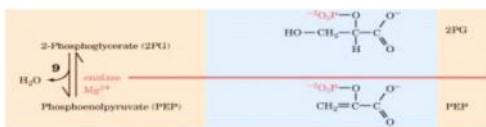
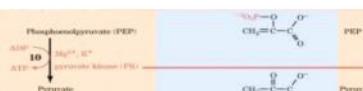

- Mutase because shifts functional group on same molecule
- Energy difference between 3PG and 2PG is small
- 2 step reaction (1 intermediate is 2,3-bisphosphoglycerate (BPG) which increases hemoglobin affinity for oxygen

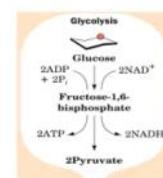
Figure 17-3


6

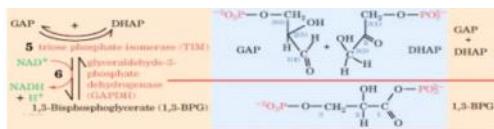
6

- Dehydration reaction of 2PG into PEP
- Endolase (makes enol pyruvate) needs Mg2+

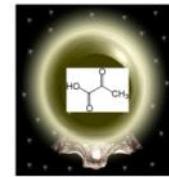
Figure 17-3


7

7

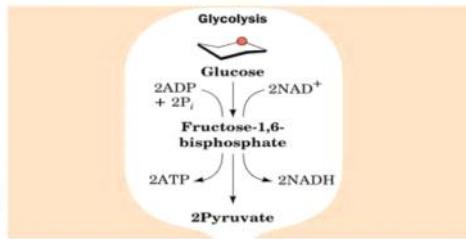

- Transfer of phosphoryl group
- Kinase - transfers phosphoryl group from ATP
- Enzyme pyruvate kinase is named for reverse reaction... don't get confused over name
- -31.5kJ/mol nearly irreversible spontaneous reaction
- Energy required to make ATP on STP is 3.5kJ/mol

Overall Chemical Strategy of Glycolysis



- Add phosphoryl groups to glucose
- Convert phosphorylated intermediates into cmpds w/ high energy
- Couple high energy cmpd hydrolysis with ATP synthesis

Figure 17-3



Fates of Pyruvate

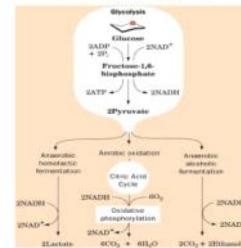

- 3 Catabolic Routes
 - Aerobic oxidation
 - Lactic acid fermentation
 - Ethanol fermentation
- Many anabolic routes

Figure 17-1

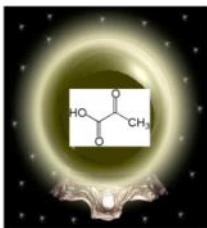
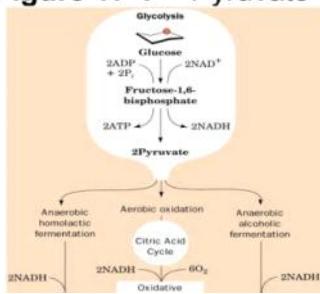

- Add phosphoryl groups to glucose
- Convert phosphorylate intermediates into compounds with high energy
- Couple high energy compound hydrolysis with ATP synthesis

Figure 17-1
NAD⁺ must be recycled

10

Fates of Pyruvate

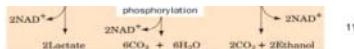


- 3 Catabolic Routes
 - Aerobic oxidation
 - Lactic acid fermentation
 - Ethanol fermentation
- Many anabolic routes

Now for a Deeper Understanding of the Preparatory Phase of Glycolysis

11

Figure 17-1 Pyruvate

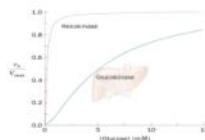


- When pyruvate goes through reactions it helps recycle NAD⁺
- Pyruvate can undergo aerobic homolactic fermentation
 - Pyruvate becomes 2 lactates
- Yeast cells in absence of oxygen will undergo anaerobic alcohol fermentation
 - Pyruvate becomes CO₂ and ethanol
- Citric cycle, TCA, and Crebs cycle all mean same thing:
 - Pyruvate to CO₂ and H₂O

Step 1: Hexokinase

- Phosphorylation of glucose
- Rxn:
 - Glucose + ATP \rightarrow G6P + ADP + H⁺

12



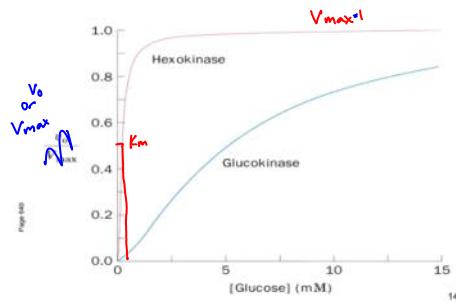
11

Now for a Deeper Understanding of the Preparatory Phase of Glycolysis

Hexokinase and Glucokinase are Isozymes

- Hexokinase
 - All cells
 - obeys M-M kinetics (hyperbolic)
 - $K_m < 0.1 \text{ mM}$
 - G6P inhibits it
- Glucokinase
 - Liver cells
 - Displays sigmoidal kinetics
 - $K_m > 5 \text{ mM}$
 - Not inhibited by G6P
 - Monomeric so sigmoidal kinetics is puzzling

12


Step 1: Hexokinase

- Phosphorylation of glucose
- Rxn:
- Glucose + ATP \rightarrow G6P + ADP + H⁺
- Coupled reaction
- When [ATP] is very high it acts as a competitive inhibitor
- Most kinases use proximity effects for reaction (including hexokinase)
- Conformational change

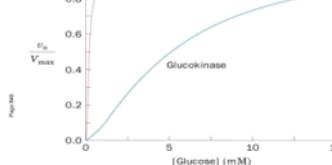

13

Figure 18-23

Glucokinase and hexokinase are isozymes. They catalyze same reaction but are not the same

14

14

Step 2: Phosphoglucone Isomerase

- Isomerization of G6P
- Rxn
 - Mg²⁺
- G6P \leftrightarrow F6P

15

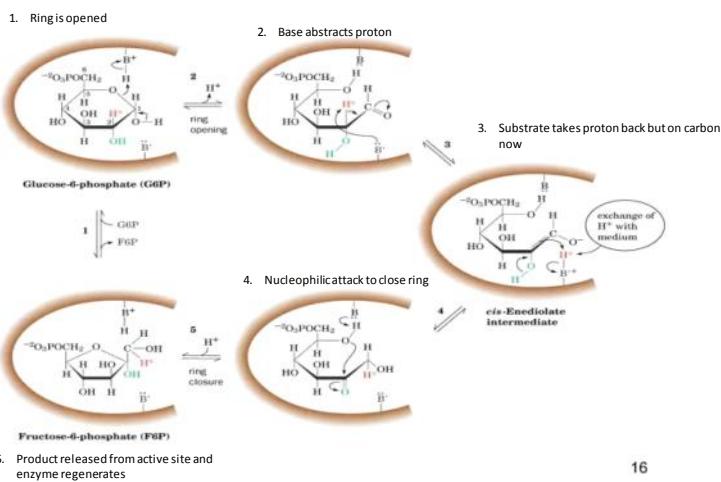
Step 2: Phosphoglucone Isomerase

- Isomerization of G6P

Figure 17-6

16

- Rxn

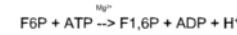

Mg^{2+}

- $G6P \leftrightarrow F6P$

- Converts aldose glucose-6-phosphate to ketose fructose-6-phosphate
- G6P and F6P is generally in ring structure so enzyme must open rings
- Acid base

15

Figure 17-6

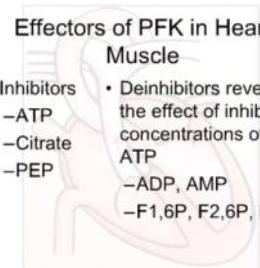


16

Step 3: Phosphofructokinase

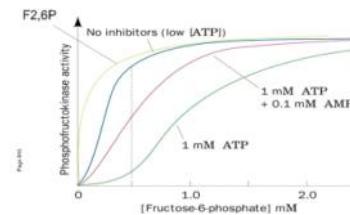
- Phosphorylation of F6P

- Rxn:



- Functions far from equilibrium
- Catalyzes RDS
- Homotetramer
- $R \leftrightarrow T$

17


Effectors of PFK in Heart Muscle

- Inhibitors
 - ATP
 - Citrate
 - PEP
- Deinhibitors reverse the effect of inhibitory concentrations of ATP
- ADP, AMP
- F1,6P, F2,6P, F6P

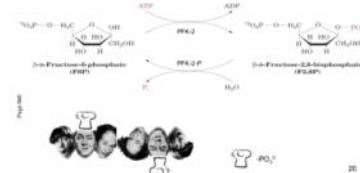
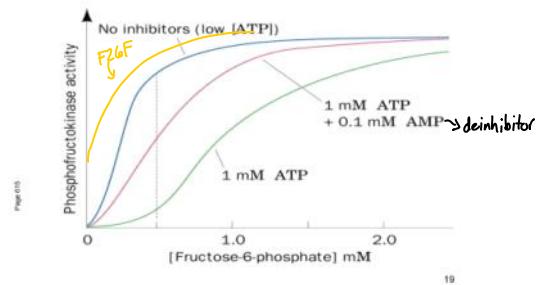

18

Figure 17-33 modified

19

Role of F2,6P in regulation of PFK

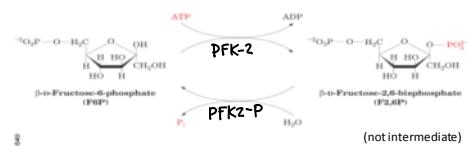

20

Regulation of PFK

Positive Effectors	Negative Effectors	Other regulatory mechanisms
AMP or ADP	ATP	F6P availability
P_i, NH_4^+	Citrate	
F2,6P (except in plants and bacteria)	H^+	

18

Figure 17-33



Page 613

19

Figure 18-24

Role of F2,6P in regulation of PFK

Page 614

PFK-2 has 2 forms
o Phosphorylated and dephosphorylated

20

Step 4: Aldolase

- Cleavage of Fructose 1,6-bisphosphate into trioses
- Rxn
- $\text{F1,6P} \leftrightarrow \text{dihydroxyacetone phosphate} + \text{glyceraldehyde 3-phosphate}$

21

Figure 17-9

Page 615

22

Step 5: Triose phosphate isomerase

- Isomerization of dihydroxyacetone phosphate to glyceraldehyde 3-phosphate
- Rxn
- DHAP \leftrightarrow G3P

23

Score card for the preparatory phase of glycolysis

- Glucose + 2 ATP \rightarrow 2 G3P + 2 ADP + 2 H⁺

24