

Glycolysis: Payoff Phase and Fermentation

Nov. 19, 2007

Glycolysis: Payoff Phase and Fermentation

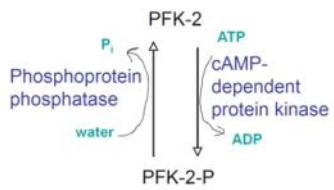
Nov. 19, 2007

Overview

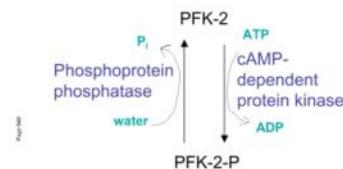
Overview

- Regulation and control of glycolytic enzymes
- Fermentation

1

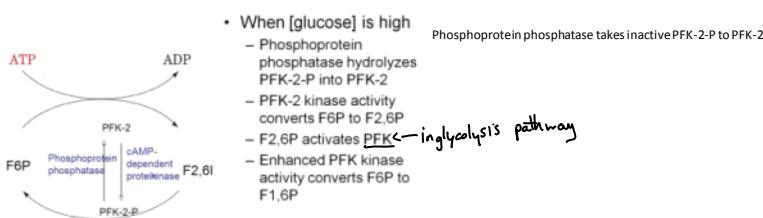

2

3


Coordinated regulation of kinase and phosphatase activities of PFK-2

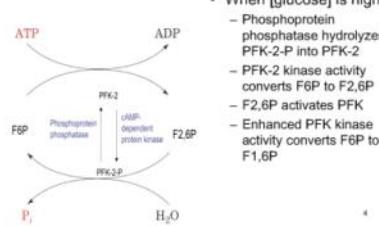
Step 3 in glycolysis

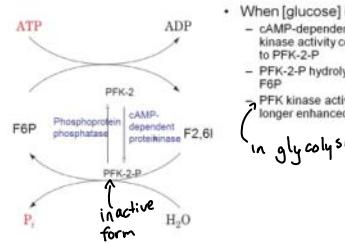
Page 60



Coordinated regulation of kinase and phosphatase activities of PFK-2

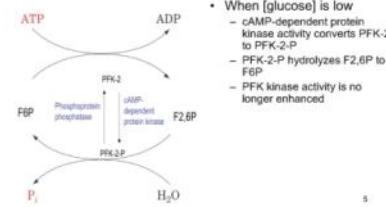
Regulation of PFK via F2,6P occurs in response to fructose-1


• When [glucose] is high


Phosphoprotein phosphatase takes inactive PFK-2-P to PFK-2.

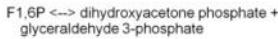
- When [glucose] is high
 - Phosphoprotein phosphatase hydrolyzes PFK-2-P into PFK-2
 - PFK-2 kinase activity converts F6P to F2,6P
 - F2,6P activates PFK
 - Enhanced PFK kinase activity converts F6P to F1,6P

Regulation of PFK via F2,6P occurs in response to [glucose]

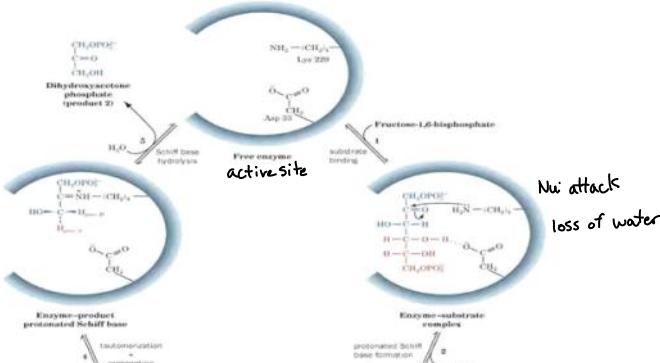


Regulation of PFK via F2,6P occurs in response to [glucose]

- When [glucose] is low
 - cAMP-dependent protein kinase activity converts PFK-2 to PFK-2-P
 - PFK-2-P hydrolyzes F2,6P to F6P
 - PFK kinase activity is no longer enhanced


Regulation of PFK via F2,6P occurs in response to [glucose]

- When [glucose] is low
 - cAMP-dependent protein kinase activity converts PFK-2 to PFK-2-P
 - PFK-2-P hydrolyzes F2,6P to F6P
 - PFK kinase activity is no longer enhanced


Step 4: Aldolase

- Cleavage of Fructose 1,6-bisphosphate into (not F2,6-bisphosphate) trioses
- Rxn

Aldolase

Figure 17-9

Step 4: Aldolase

- Cleavage of Fructose 1,6-bisphosphate into trioses
- Rxn

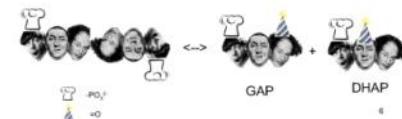
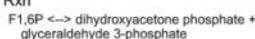
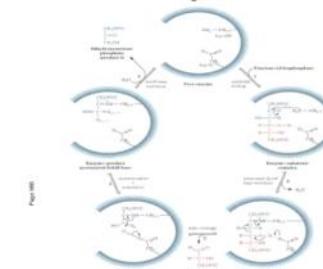
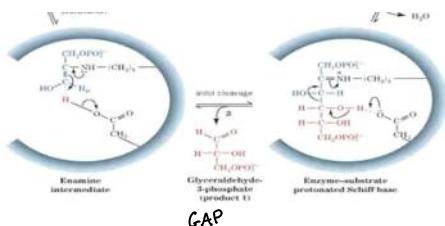





Figure 17-9

Step 5: Triose phosphate isomerase

- Isomerization of dihydroxyacetone phosphate to glyceraldehyde 3-phosphate

Rxn
DHAP \leftrightarrow GAP

Step 5: Triose phosphate isomerase

- Isomerization of dihydroxyacetone phosphate to glyceraldehyde 3-phosphate

Rxn

Score card for the preparatory phase of glycolysis

- Glucose + 2 ATP \rightarrow 2 GAP + 2 ADP + 2 H⁺

Score card for the preparatory phase of glycolysis

- Glucose + 2 ATP \rightarrow 2 G3P + 2 ADP + 2 H⁺

Figure 17-3

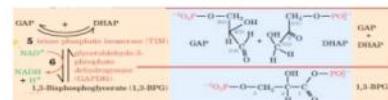


Figure 17-3

Enzyme: GAPDH
Glyceraldehyde-3-phosphate dehydrogenase

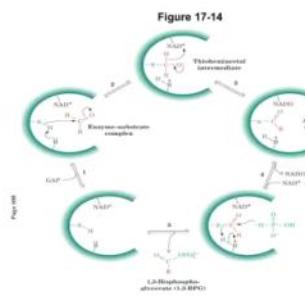
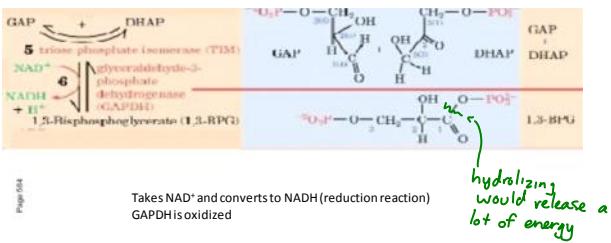



Figure 17-3

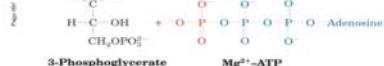
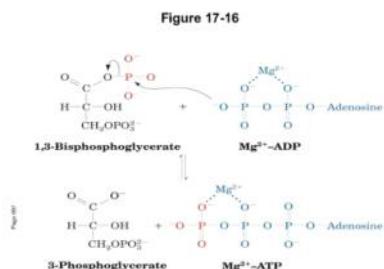
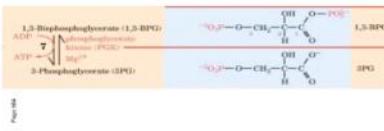




Figure 17-3

Enzyme: PGK Phosphoglycerate kinase
Making ATP

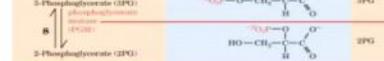
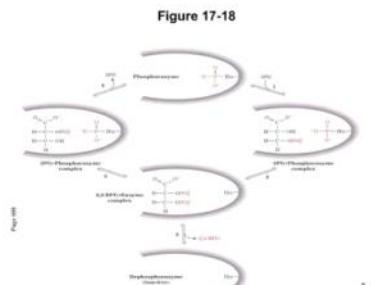
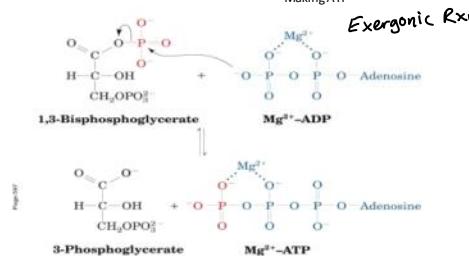
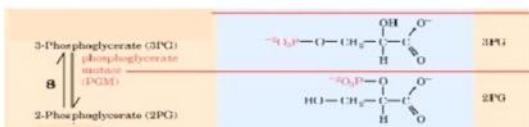




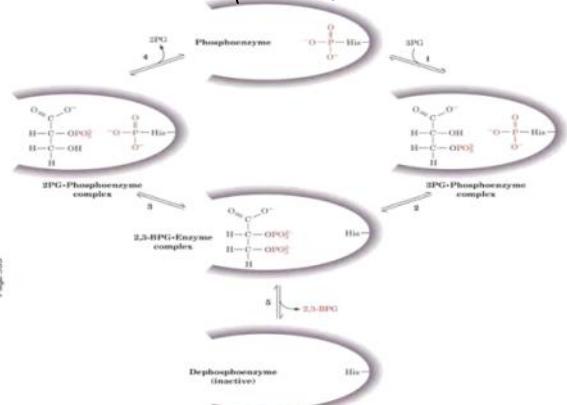
Figure 17-3


Figure 17-16

Enzyme: PGK Phosphoglycerate kinase
Making ATP

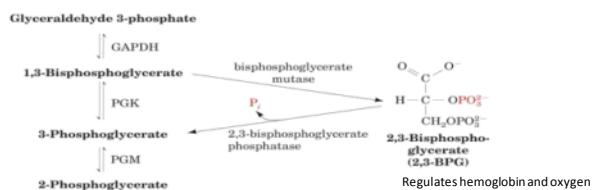
Figure 17-3

Step 8
Enzyme:PGM



Page 504

Step 8
Enzyme:PGM


Figure 17-18

Active site phosphoenzyme

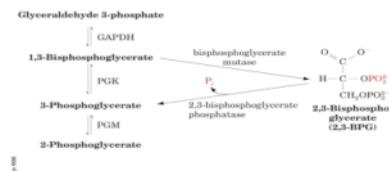
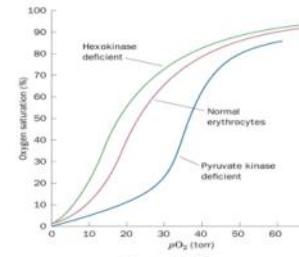

Page 505

Figure 17-19 Detour off of glycolysis



Page 506

Figure 17-19

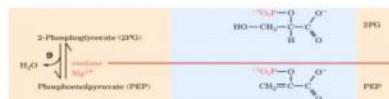

16

Figure 17-20

17

Figure 17-3

18

Figure 17-3

19

Hemoglobin (sigmoidal shape)

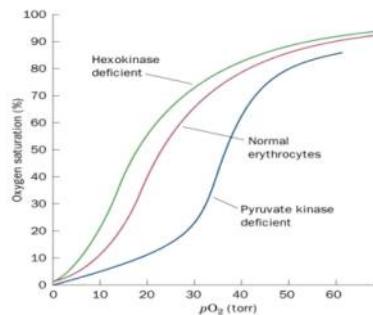
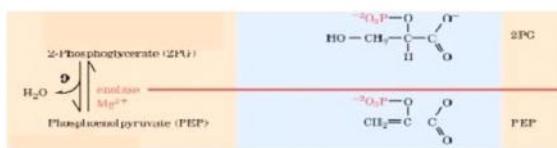


Figure 17-20

- Hexokinase increases binding strength of oxygen to hemoglobin
 - Less 2,3PG is formed which affects affinity for hemoglobin for oxygen
- Pyruvate kinase decreases binding strength of oxygen to hemoglobin
 - Accumulation of 2,3PG because pyruvate kinase catalyzes the final step of glycolysis and will accumulate intermediates of intermediates thus accumulation of 2,3PG

Figure 17-22

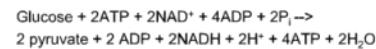
Reaction Catalyzed by Pyruvate Kinase


Overall: $ADP \rightarrow ATP + Pi$

Positive effectors	Negative effectors	Other
AMP, ADP	ATP	Reversible phosphorylation
F1,6P	Acetyl-CoA	
F2,6P	NADH	
	Alanine	
	Long-chain fatty acids	

20

Figure 17-3


Step 9
Enzyme: Enolase
Enzyme class: Lyase

Overall Balance Sheet of Glycolysis

- We need to account for:
 - Carbon skeleton of glucose
 - Input of P_i and ADP
 - Output of ATP
 - Electrons in the redox rxns

Overall Balance Sheet of Glycolysis

Cancel out common terms....

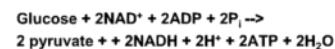
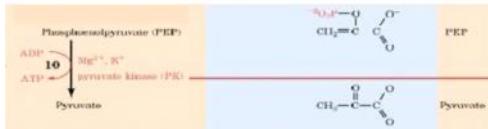
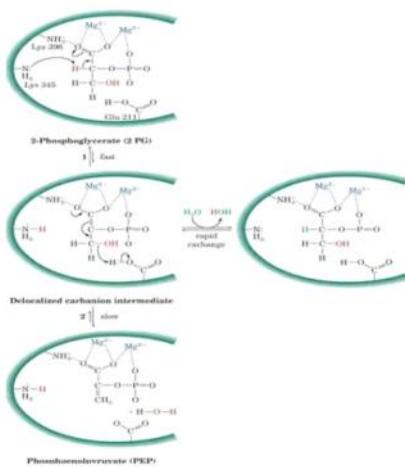



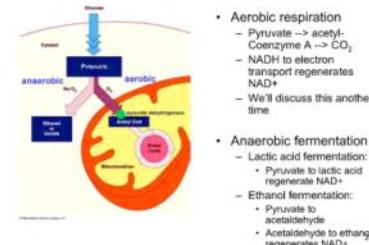
Figure 17-3

Step 10
Enzyme: PK Pyruvate Kinase


Intermediates are Channeled

- Glycolytic enzymes likely exist as multienzyme complexes
- Complexes ensure efficient passage of metabolites

23


Figure 17-21

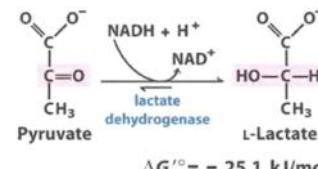
Step 10

Page 601

Fates of Pyruvate

- Aerobic respiration
 - Pyruvate \rightarrow acetyl-Coenzyme A \rightarrow CO_2
 - NADH to electron transport regenerates NAD^+
 - We'll discuss this another time
- Anaerobic fermentation
 - Lactic acid fermentation:
 - Pyruvate to lactic acid regenerates NAD^+
 - Ethanol fermentation:
 - Pyruvate to acetaldehyde
 - Acetaldehyde to ethanol regenerates NAD^+

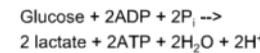
Step 10


Figure 17-22

How can regulate?

Positive effectors	Negative effectors	Other
AMP, ADP Concentration effects	ATP Le'Chatier	Reversible phosphorylation dephosphorylated, pyruvate is active. Phosphorylated is inactive.
F1,6P Intermediate in glycolysis. If we have higher concentration then positive effector	Acetyl-CoA	
F2,6P Same reason F1,6P	NADH	
	Alanine Pyruvate has anabolic and catabolic fates meaning pyruvate can be made to make other biomolecules (alanine is one of those)	
	Long-chain fatty acids Same reason as alanine	

Page 602


Homolactic Fermentation

$$\Delta G' = -25.1 \text{ kJ/mol}$$

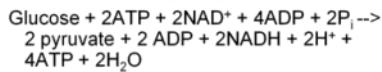
25

Homolactic Fermentation Balance Sheet

26

Overall Balance Sheet of Glycolysis

- We need to account for:
 - Carbon skeleton of glucose
 - Input of P_i and ADP
 - Output of ATP
 - Electrons in the redox rxns



Alcohol Fermentation

27

Overall Balance Sheet of Glycolysis

Cancel out common terms....

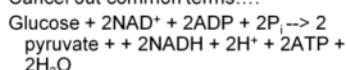
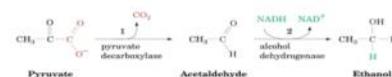



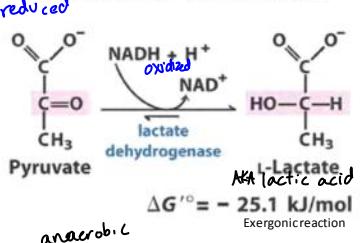
Figure 17-25
Alcohol Fermentation

28

Enzymes are in cytosol
 More efficient when enzymes are close together

Intermediates are Channeled

- Glycolytic enzymes likely exist as multienzyme complexes
- Complexes ensure efficient passage of metabolites


Fates of Pyruvate

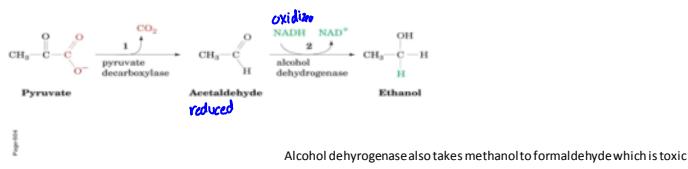
- Aerobic respiration
 - Pyruvate \rightarrow acetyl-Coenzyme A $\rightarrow \text{CO}_2$
 - NADH to electron transport regenerates NAD^+
 - We'll discuss this another time
- Anaerobic fermentation
 - Lactic acid fermentation: occurs in animals
 - Pyruvate to lactic acid regenerate NAD^+
 - Ethanol fermentation: occurs in yeast
 - Pyruvate to acetaldehyde
 - Acetaldehyde to ethanol regenerates NAD^+

Picture missing

12.5% (2.5M) ethanol yeast can survive
 most organisms can't survive >5% ethanol

Homolactic Fermentation

occurs in muscles


Soreness in muscles due to lactic acid

Slide Missing: Alcohol Fermentation

- Occurs in wine, beer, etc
- Occurs in bread making (bread rises)

Figure 17-25

Alcohol Fermentation

No time, did not cover here and down

Figure 17-26

Thiamine pyrophosphate.

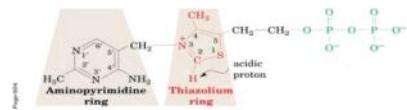
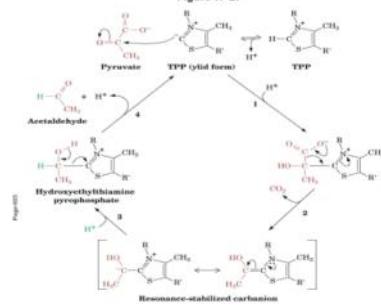



Figure 17-27

