

Friday, November 02, 2007
9:56 AM

Notes 1112

Audio recording started: 10:02 AM Friday, November 02, 2007

- **Slide 1: Enzymes: Serine Proteases**
 - (Nov 7th Midterm will cover up to the end of this lecture)
 - Q&A session FRANZ 1178 Nov 2nt 5-6pm

Enzymes: Serine Proteases

(Nov. 7th Midterm will cover up to the end
of this lecture)

○

Nov. 2, 2007

1

- **Slide 2: Outline**
 - Reminder: Nov 7th midterm
 - Quick review of Wednesday's lecture
 - Variant vs. invariant position
 - Conservative vs nonconservative substitution
 - Serine proteases
 - Lysozyme
 - BPG

Outline

- Reminder: Nov. 7th midterm
- Quick review of Wednesday's lecture
- Variant vs. invariant position
- Conservative vs. nonconservative substitution
- Serine Proteases
- Lysozyme
- BPG

2

- **Slide 3: Nov. 7th Midterm**
 - Lecture 1: 9am-9:50am CS76
 - Lecture 2 10am-10:50Am CS76
 - Black or blue ink only
 - Follow all directions
 - No make-ups
 - Nonprogrammable calculator (if in doubt, ask)
 - No correction supplies, pencil, erasers
 - No notes, books collaboration, talking
 - No electronic devices
 - Academic integrity

Nov. 7th Midterm

- Lecture 1 9:00 AM-9:50 AM CS76
- Lecture 2 10:00 AM-10:50 AM CS76
- Black or blue ink only
- - Follow all directions
 - No make-ups
 - Nonprogrammable calculator (if in doubt, ask)
 - No correction supplies, pencil, erasers
 - No notes, books, collaborating, talking
 - No electronic devices
 - Academic integrity

3

- **Slide 4: Review of Wednesday's Lecture**

- Bones contain collagen
 - Collagen is connective tissue
 - Gly triple repeat
 - Tripple helical structure... 3.3 residues per polypeptide turn (not alpha)
- 6 catalytic mechanisms
 - Aldose 1-epimerase
 - Uses acid-base concerted mechanism
 - Catalyzes mutarotation
 - Nucleophilic and electrophilic stages of acetoacetate --> acetone
 - Dee Snider: human carbonic anhydrase, hexokinase
 - Electrostatic cat. & microenvironment
 - Electrostatic cat - dielectric constant within microenvironment. Dielectric constant in active site is lower than water.
 - Drug design exploits preferential transition state binding.

Review of Wednesday's Lecture

- Bones contain collagen
- 6 catalytic mechanisms
 - aldose 1-epimerase
 - Nucleophilic and electrophilic stages of acetoacetate \rightarrow acetone
 - Dee Snider: human carbonic anhydrase, hexokinase
 - Electrostatic cat. & microenvironment
 - Drug design exploits preferential transition state binding
- Serine Protease and Lysozyme

4

- **Slide 5: Primary sequence homology (OCT8 lecture)**
 - Homologous proteins from different organisms have homologous sequences
 - Cytochrome
 - Reveals critical residues for higher order
 - Sequences and composition reflect the function of the protein
 - Evolutionary relatedness can be inferred from sequence homology
 - e.g. serine proteases are evolutionary related
 - Called serine proteases because have serine in active site
 - e.g., cytochrome C

Primary sequence homology

- Homologous proteins from different organisms have homologous sequences
- Reveals critical residues for higher order
- Sequences and composition reflect the function of the protein
- Evolutionary relatedness can be inferred from sequence homology
 - e.g. serine proteases are evol. related
 - e.g., cytochrome c is highly conserved

5

- **Side 6: Protein Homology among Species**

- Homologous proteins: evolutionary related proteins
- Invariant residue: positions in the amino acid sequence of a protein that are the same in all species
- Variable (variant) residue: positions that can vary.
- Conservative substitution: position in the amino acid sequence that has a different residue compared to a reference protein, but the residue shares similar properties with the reference residue
 - e.g. if organism A has alanine at position and organism B has valine at position then it is conservative substitution
 - If organism a has alanine and glutamine, it is nonconservative because these a.a. are so different in properties

Protein Homology among Species

- **Homologous proteins:** evol. related proteins
- **Invariant residue:** positions in the a.a. sequence of a protein that are the same in all species
-
- **Variable (variant) residue:** positions that can vary
- **Conservative substitution:** position in the aa sequence that has a different residue compared to a reference protein, but the residue shares similar properties with the reference residue

6

- **Side 7: Amino Acid Sequence of Cytochromes c from 38 species (OCT8 lecture)**

- High degree of conservation between species
- Position 1 - every organism has glycine
 - Invariant position or invariant residue
- Position 21 - glutamic acid and then aspartic acid
 - Residues vary but similar properties so it is conservative substitution
- Position 3 (at end)
 - Alanine, Valine in animals. Theanine in plants
- Able to tell how related different species are to another

Table 7-4. Amino Acid Sequences of Cytochromes c from 38 Species.

Number of different amino acids: 1 3 5 9 5 1 3 3 4 1 4 3 2 1 3 1 1 5 1 4 2 4 1 2 3 2 3 4 1 3 1 2 1 5 1 3 3 2 1 3 3

Hydrophilic, acidic: A Asp E Glu

Hydrophilic, basic: H His K Lys R Arg X Trimethyllys

Polar, uncharged: D Asn or Asp G Gly N Asn Q Gln

Polar, charged: S Ser T Thr W Trp Y Tyr Z Gln or Glu

Hydrophobic: A Ala C Cys F Phe I Ile L Leu

M Met P Pro V Val

7

- **Slide 8: mechanisms of well characterized enzymes**

- Serine proteases
 - Preferentially bind the transition state
 - Proteolytic enzymes
 - Hydrolyze peptide bonds
 - Reactive Ser residue
 - Chymotrypsin, trypsin, elastase
- Lysozyme
 - Destroys bacterial cell walls
 - Found in secretion of vertebrates (found in our tears)
 - Hydrolyzes beta (100>4) glycosidic linkages of NAM-NAG
 - Be able to draw NAM-NAG **
 - Hydrolyzes poly(NAG)
 - Poly(NAG) is chitin

Mechanisms of well characterized enzymes

- **Serine proteases**
 - Preferentially bind the transition state
 - Proteolytic enzymes
 - Reactive Ser residue
 - Chymotrypsin, trypsin, elastase
- **Lysozyme**
 - Destroys bacterial cell walls
 - Hydrolyzes beta(1-->4) glycosidic linkages of NAM-NAG
 - Hydrolyzes poly(NAG) (chitin)

8

- **Slide 9: Serine Proteases**
 - Diverse group
 - Digestive team
 - Made in pancreas
 - Get secreted into intestines
 - Different side chain specificities
 - Chymotrypsin
 - Bulky hydrophobic residues
 - Trypsin
 - Positively charged residues
 - Elastase
 - Small neutral Residues
 - Active site has catalytic triad meaning has 3 different residues that catalyze reaction
 - His 57, Ser 195, Asp 102
 - All serine proteases have this catalytic triad

Serine Proteases

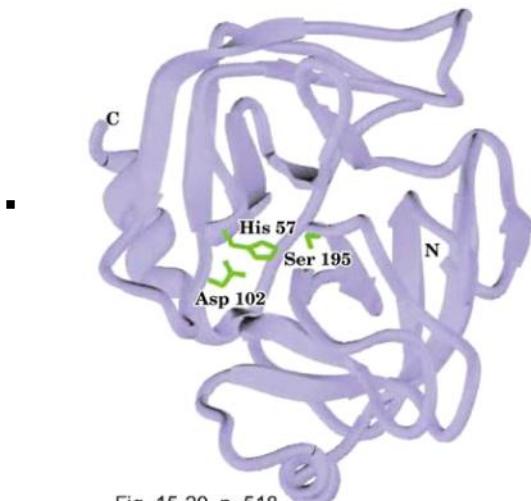
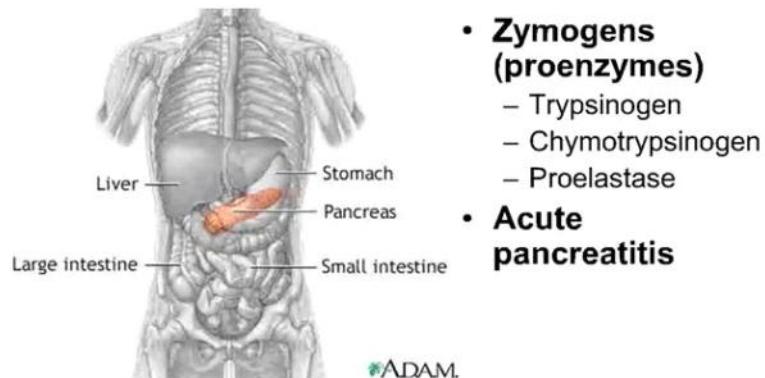
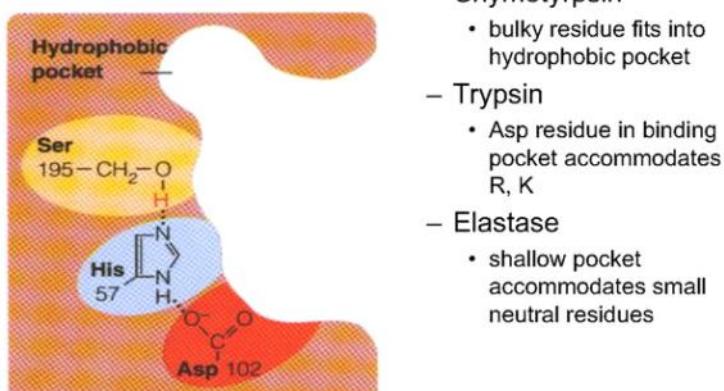



Fig. 15-20, p. 518

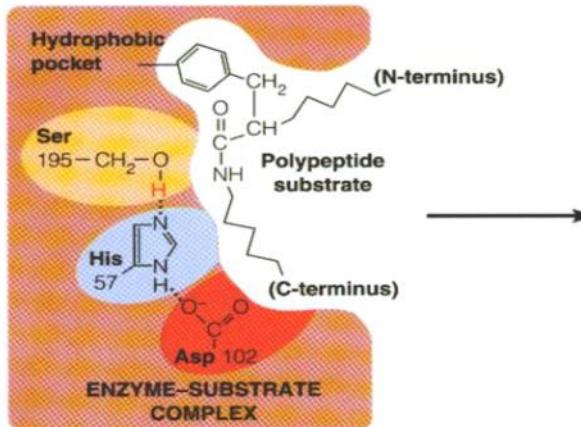
- Diverse group
- Digestive team
- Different side chain specificities
 - Chymotrypsin
 - Bulky hydrophobic residues
 - Trypsin
 - Positively charged residues
 - Elastase
 - Small neutral residues

- **Slide 10: Serine proteases are synthesized as zymogens**
 - Zymogen (proenzymes)
 - Larger inactive precursor to active enzyme
 - Activated through proteolysis
 - By cleaving part of a.a. sequence of zymogen to active enzyme, the conformation changes allowing it to be active
 - Zymogens (proenzymes)
 - Trypsigen
 - ◆ Proenzyme for trypsin
 - Chymotrypsogen
 - ◆ Proenzyme for chymotrypsin
 - Proelastase
 - ◆ Proenzyme for elastase
 - Acute pancreatitis
 - If you cannot regulate zymogen correctly


Serine proteases are synthesized as zymogens

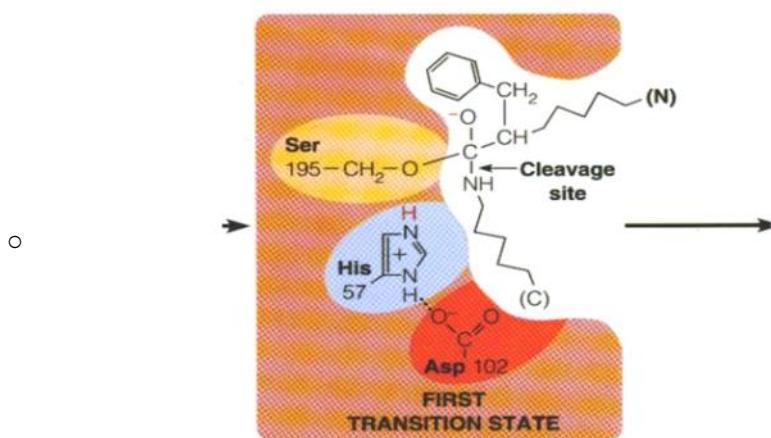
- **Zymogens (proenzymes)**
 - Trypsinogen
 - Chymotrypsinogen
 - Proelastase
- **Acute pancreatitis**

- **Slide 11: Serine Protease Specificity**
 - Missed everything...go back
 - Chymotrypsin
 - Bulky residue that fits into hydrophobic pocket


Serine Protease Specificity

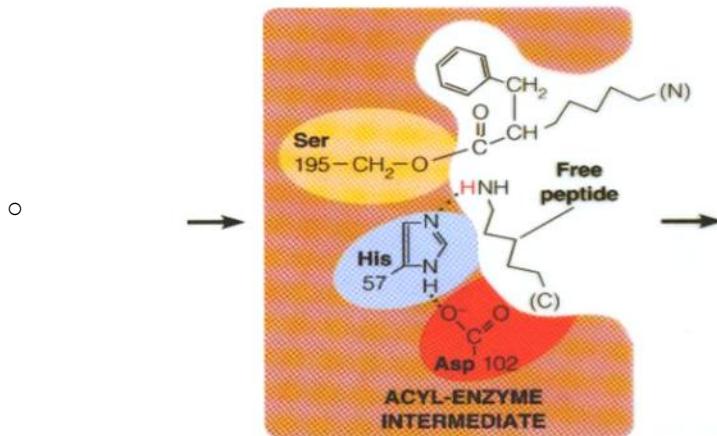
- Chymotrypsin
 - bulky residue fits into hydrophobic pocket
- Trypsin
 - Asp residue in binding pocket accommodates R, K
- Elastase
 - shallow pocket accommodates small neutral residues

- **Slide 12: Chymotrypsin and Catalytic Triad**
 - Enzyme Substrate complex
 - H-bond between Ser and His

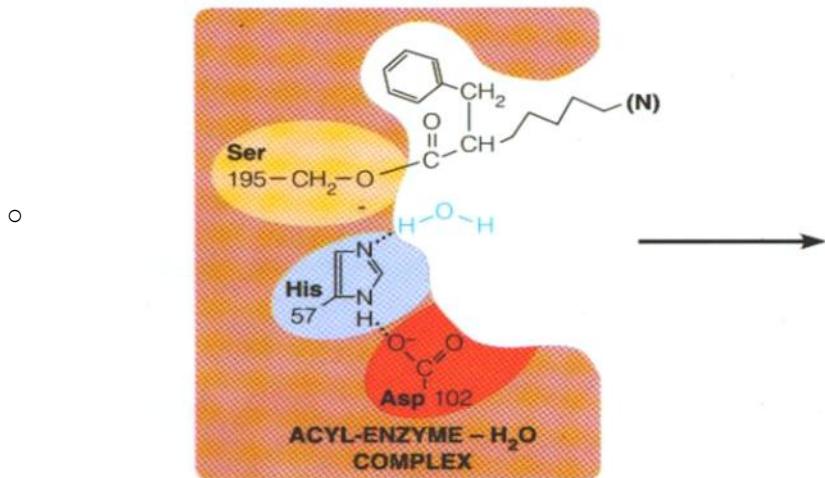

Chymotrypsin and the Catalytic Triad

- **Slide 13: Serine Proteases and the Catalytic Triad**

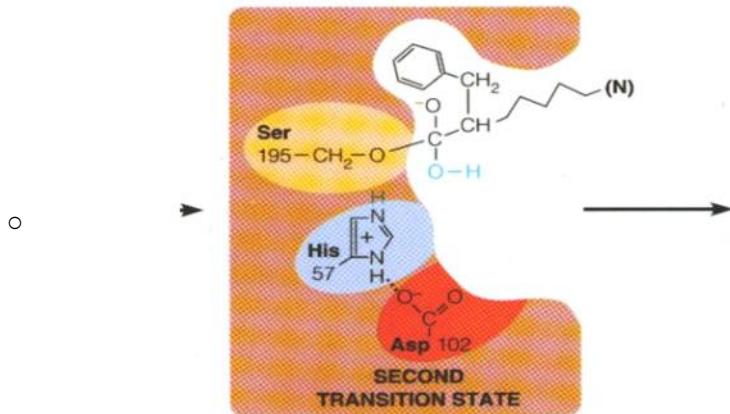
- From slide 12, Ser bonds to carbonyl and Ser His h-bond is broken
- Transition state
- Carbon is in tetrahedral
- Aspartic acid forms h-bond with histidine


Serine Proteases and the Catalytic Triad

- **Slide 14: Serine proteases and the catalytic triad**

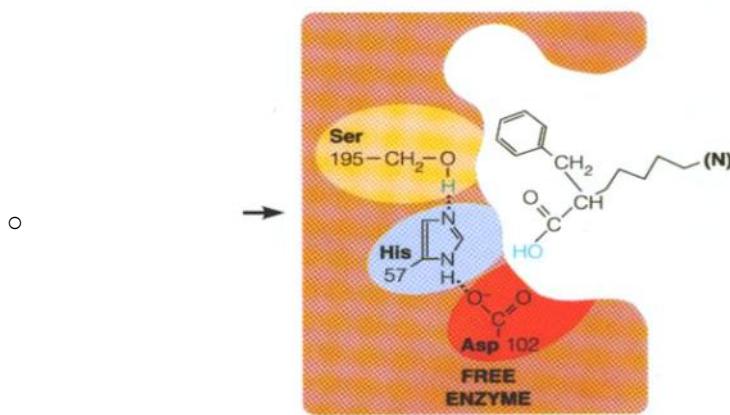

- Acyl-enzyme intermediate
- H from his forms on NH and free peptide forms with breakage of tetrahedral carbon

Serine Proteases and the Catalytic Triad


- **Slide 15: Serine proteases and the Catalytic Triad**
 - Acyl-Enzyme - H₂O Complex
 - Water attached to His

Serine Proteases and the Catalytic Triad

- **Slide 16: Serine Proteases and the Catalytic Triad**
 - Second Transition State
 - OH leaves from water and attaches to make tetrahedral carbon again

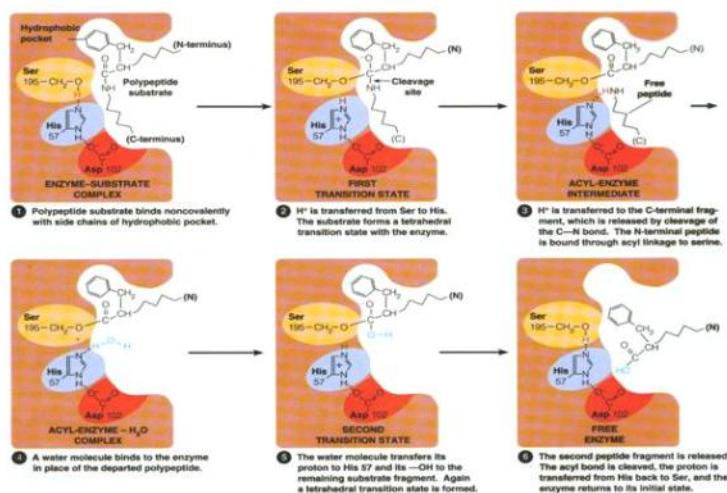

Serine Proteases and the Catalytic Triad

- **Slide 17: Serine Proteases and the Catalytic Triad**

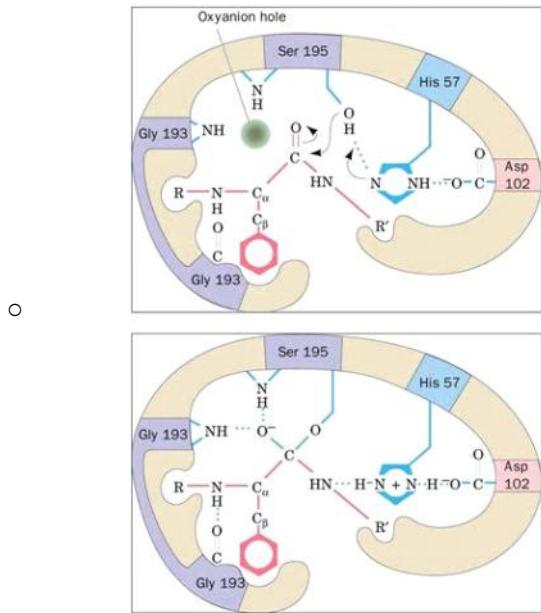
- Free Enzyme
 - His and Ser H bond

Serine Proteases and the Catalytic Triad

- **Slide 18: Serine Proteases and Catalytic Triad**


- Catalysis of peptide obond hydrolysis by chymotripsin
 1. Polypeptide substrate binds noncovalently with side chains of hydrophobic pocket
 2. H⁺ is transferred from Ser to His. The substrate forms a tetrahedral transition state with enzyme
 3. H⁺ is transferred to the C-terminal fragment, which is released by cleavage of C-N bond.

The....


4. See slides
5. See slides
6. See slides

Serine Proteases and the Catalytic Triad

Catalysis of peptide bond hydrolysis by chymotrypsin

- **Slide 19: Transition state stabilization in serine proteases**
 - Catalytic Triad
 - H-bonded "constellation"
 - Binding site: His 57, Ser 195
 - Solvent inaccessible pocket: Asp 102
 - Water cannot get into it
 - Chymotrypsin is through preferential binding of transition site

Transition state stabilization in serine proteases

- **Catalytic Triad**

- H-bonded “constellation”
- Binding site: His 57, Ser 195
- Solvent inaccessible pocket: Asp 102

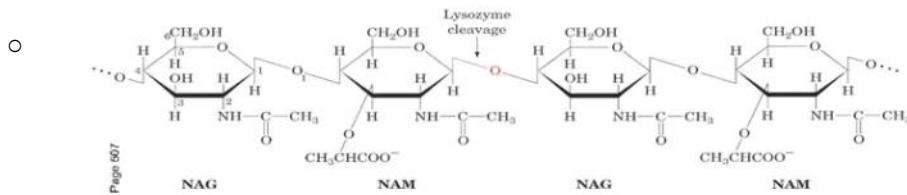
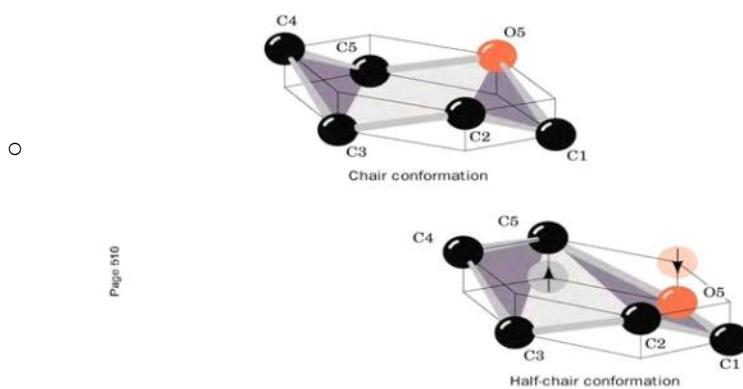

- **Slide 20: Fig. 15-9 Lysozyme**
 - Disulfide linkages from cystines
 - Also called cystine
 - Disrupt disulfide linkages through reducing agent such as beta-mercapto ethanol
 - Picture for Hen egg white

Fig. 15-9. Lysozyme

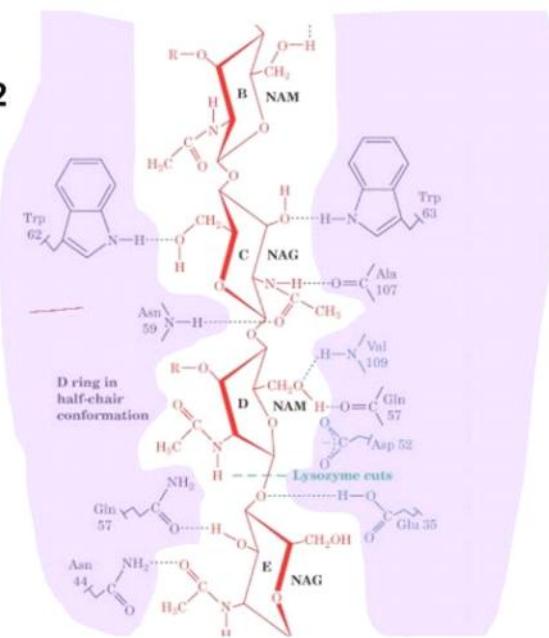
- **Slide 21: Figure 15-8**
 - Lysozyme is breaking $\beta(1 \rightarrow 4)$ glycosidic linkage


Figure 15-8

- **Slide 22: Figure 15-11**

- Lysozyme works by straining by hexose ring
- In chair conformation there is little steric strain
- In 1/2 chair there is steric strain. C1, C2, C5, and O5 become planar

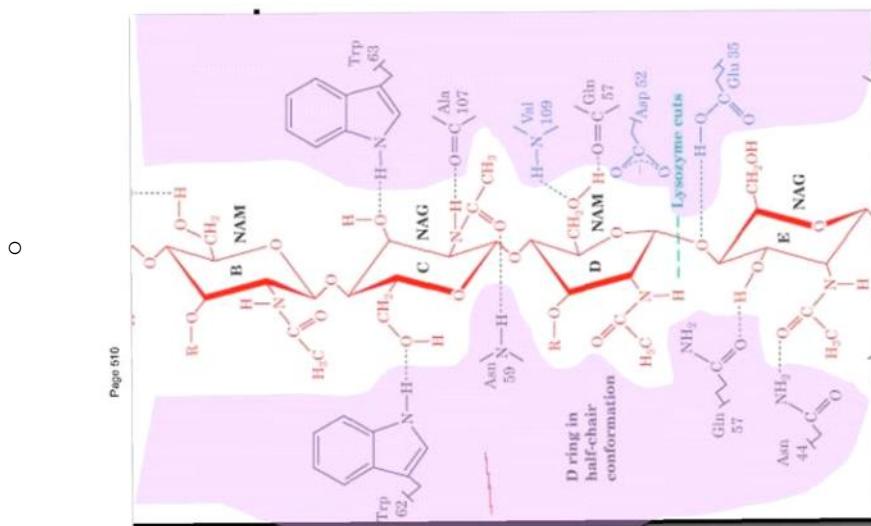
Figure 15-11


- **Slide 23: figure 15-12 (modified from book)**

- Diagram of active site of lysozyme
- Lysozyme is shaded purple
- NAM-NAG is in red
- On D ring

- In 1/2 chair conformation through binding with lysozyme residues

**Figure 15-12
(modified)**


Page 510

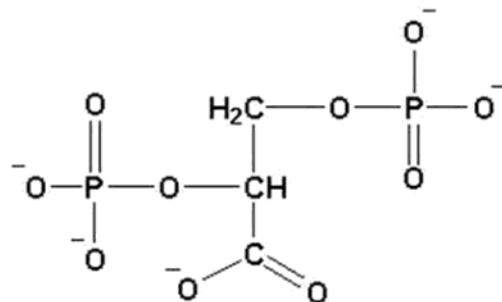
- **Slide 24: figure 15-12 (flipped 90°)**

- 1/2 chair conformation is clear
- Slipped because we are more used to seeing NAM-NAG horizontally
- Transition state is electrostatically stabilized

Figure 15-12

- **Slide 25: Flashback: Hemoglobin**

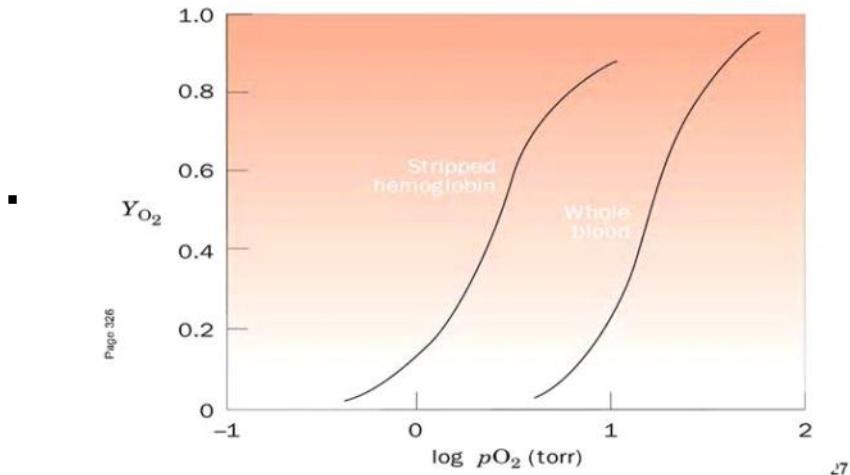
- Figure 10-13
- Oxegenated hemoglobin


Flashback: Hemoglobin

25

- **Slide 26: Effect of BPG on O₂ Binding**
 - BPG: 2,3-Bisphosphoglycerate
 - Effects oxygen binding
 - Found in blood
 - Hemoglobin is able to disassociate from oxygen easier with BPG

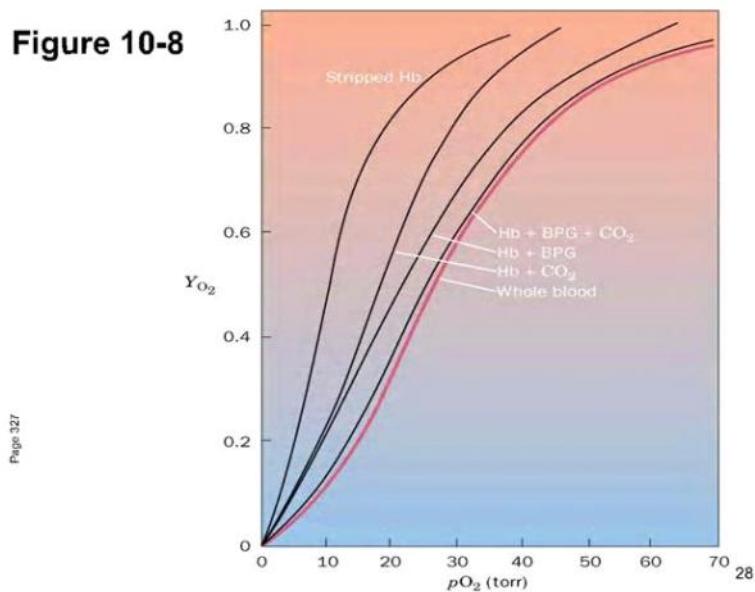
Effect of BPG on O₂ Binding


2,3-Bisphosphoglycerate

26

- **Side 27: figure 10-7**
 - Dissociation curve of hemoglobin (log scale)
 - Stripped hemoglobin (not in whole blood)
 - Binds onto oxygen tighter than whole blood (due to BPG)

- Whole blood
 - Binds onto oxygen looser than whole blood
- Drawn at pH 7
- Y_{O_2} is fractional saturation
 - Hemoglobin can hold 4 Oxygen molecules
- P_{50} occurs when 1/2 of oxygen is disassociated from hemoglobin


Figure 10-7

• **Slide 28: Figure 10-8**

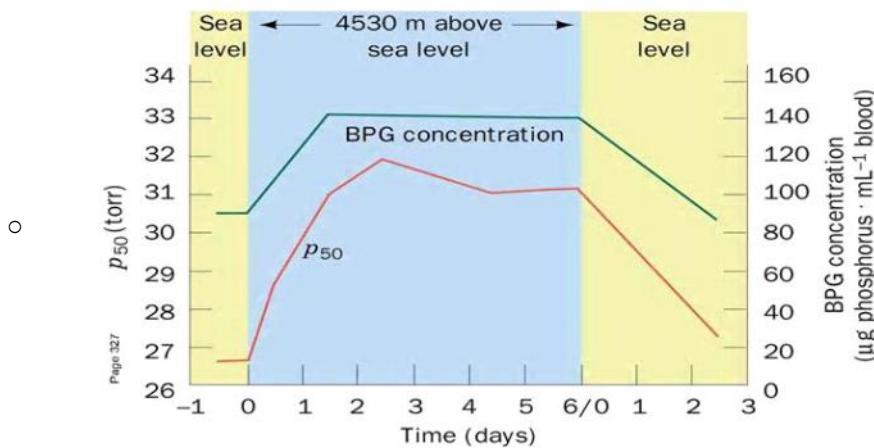
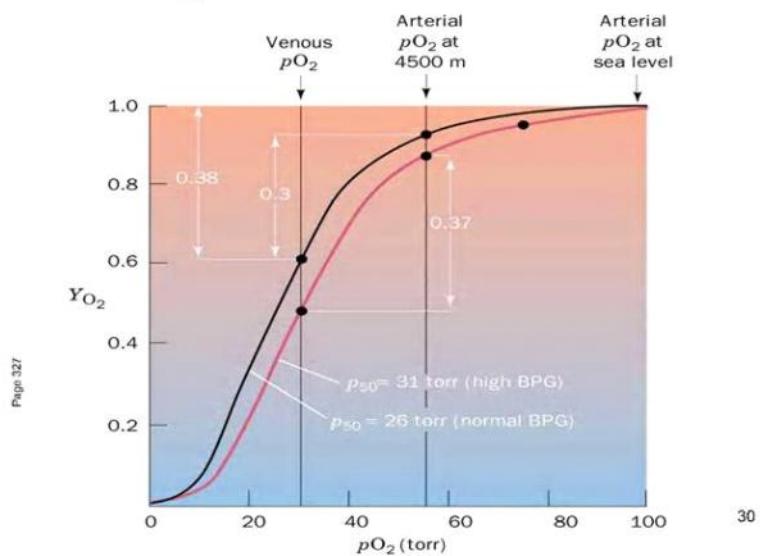

- Disassociation curve (linear scale)
 - Arteries partial pressure is 100
 - Veins partial pressure is about 30
- Whole Blood
- Hb + CO₂
 - Bohr effect
 - Carbonic anhydrase
 - Lowers pH
 - At lower pH hemoglobin disassociates from oxygen than at a higher pH
- Hb + BPG
- Hb + BPG + CO₂
- Stripped Hb
 - Tightest hold

Figure 10-8

- **Slide 29: Figure 10-9**
 - At different altitudes and BPG
 - At higher altitudes, BPG concentration is higher in blood


Figure 10-9

29

- **Slide 30: Figure 10-10**
 - High BPG releases oxygen more than low BPG

Figure 10-10

