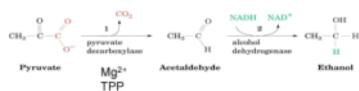


**Fermentation,
Gluconeogenesis, and
Pyruvate DH Complex Part I**
Nov. 20, 2007

**Fermentation,
Gluconeogenesis, and
Pyruvate DH Complex Part I**
Nov. 20, 2007

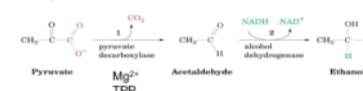
Fermentation

- General term to describe a process that extracts energy (as ATP) without consuming oxygen nor changing the $[NAD^+]$ or $[NADH]$
- The H:C ratio of the reactants and products remains the same
- Carried out by wide variety of organisms

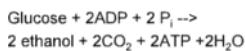

Fermentation

- General term to describe a process that extracts energy (as ATP) without consuming oxygen nor changing the $[NAD^+]$ or $[NADH]$
- The H:C ratio of the reactants and products remains the same
- Carried out by wide variety of organisms

1


Figure 17-25
Alcohol Fermentation

2


Figure 17-25
Alcohol Fermentation

3

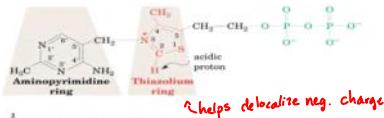
Alcohol Fermentation Balance

Sheet

Anaerobic respiration does not utilize the full energy potential of glucose

Aerobic respiration is best way to utilize full energy of glucose

Alcohol Fermentation Balance


Sheet

Anaerobic fermentation does not utilize the full energy potential of glucose

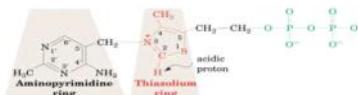
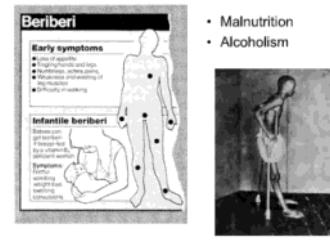
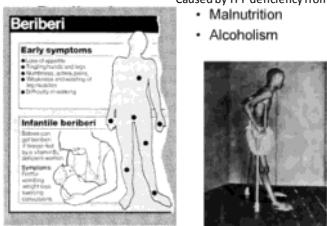

4

Figure 17-26
Thiamine pyrophosphate (TPP aka vitamin B1)

- Deficiency leads to beriberi
- Yeast needs this to catalyze reactions

Figure 17-26
Thiamine pyrophosphate

- Deficiency leads to beriberi

5

Caused by TPP deficiency from:

- Malnutrition
- Alcoholism

Liver Alcohol Dehydrogenase (LADH)

- Animals don't convert acetaldehyde to ethanol
- Animals convert ethanol to acetaldehyde using LADH Metabolizes ethanol in our livers Flora in our gut sometimes produces ethanol
- Too much ethanol can lead to veisalgia
 - Veisalgia - hangover

Liver Alcohol Dehydrogenase (LADH)

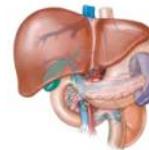
- Animals don't convert acetaldehyde to ethanol
- Animals convert ethanol to acetaldehyde using LADH
- Too much ethanol can lead to veisalgia

7

Veisalgia = hangover

- Norwegian *kvæs* (uneasiness following debauchery) + Greek *algia* (pain)
- Symptoms: dehydration, fatigue, headache, nausea, diarrhea, weakness, anxiety, irritability
- NADH builds up and inhibits gluconeogenesis in the liver
- B_{12} deficiency
- Ethanol is diuretic \rightarrow water loss \rightarrow decrease blood volume, decrease brain size (headache), irritates stomach (GI system)
- Each ethanol molecule uses 2 NADH molecules so NAD⁺ is accumulated....check this?
- Buildup of NADH slows down gluconeogenesis
- Leads to hypoglycemia

Veisalgia = hangover


- Norwegian *kvæs* (uneasiness following debauchery) + Greek *algia* (pain)
- Symptoms: dehydration, fatigue, headache, nausea, diarrhea, weakness, anxiety, irritability
- NADH builds up and inhibits gluconeogenesis in the liver
- B_{12} deficiency

Missing: picture of heart

Gluconeogenesis = "new sugar"

- Formation of glucose from pyruvate **Lactate** is from anaerobic fermentation in mammals
- **lactate**, glycerol, certain amino acids
- Occurs in all animals, plants, fungi, and microbes
- In mammals, mostly occurs in liver

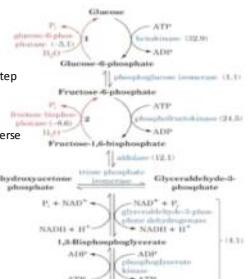
Gluconeogenesis = "new sugar"

- Formation of glucose from pyruvate, lactate, glycerol, certain amino acids
- Occurs in all animals, plants, fungi, and microbes
- In mammals, mostly occurs in liver

Gluconeogenesis vs Glycolysis

- Gluconeogenesis utilizes glycolytic enzymes
- HK, PFK, PK are replaced by other enzymes
 - These enzymes catalyze reactions by high negative ΔG to enzymes that are more thermodynamically ideal
- Pyruvate \rightarrow Oxaloacetate \rightarrow PEP
 - Pyruvate: 3C compound
 - Oxaloacetate: 4C compound
 - PEP: 3C compound
- Enzymes:
 - Pyruvate Carboxylase
 - PEP carboxykinase (PEPCK)

Gluconeogenesis vs Glycolysis

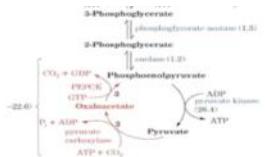

- Gluconeogenesis utilizes glycolytic enzymes
- HK, PFK, PK are replaced
 - Pyruvate \rightarrow Oxaloacetate \rightarrow PEP
 - Pyruvate carboxylase
 - PEP carboxykinase (PEPCK)

9

10

Figure 23-7

Different than glycolysis shown in red
Gluconeogenesis bottom to top


Different enzymes are generally used in gluconeogenesis when the reverse glycolysis step has high negative ΔG and therefore a high positive ΔG for gluconeogenesis

Having different enzymes for forward and reverse reaction allows them to be regulated independently

Figure 23-7

11

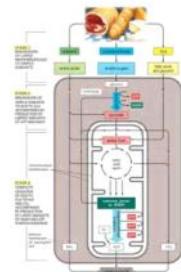
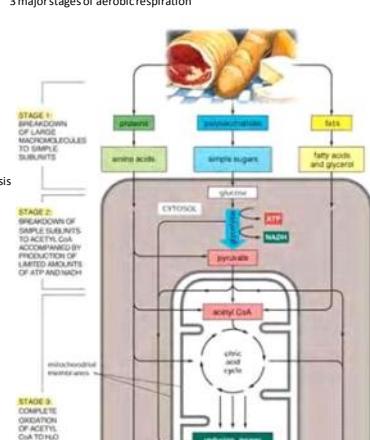
Last Fate of Pyruvate We'll Discuss: Aerobic Oxidation

Last Fate of Pyruvate We'll Discuss: Aerobic Oxidation

12

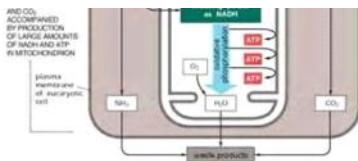
Aerobic Respiration

- Aerobic phase of catabolism is called respiration
- Cellular respiration: molecular process by which cells consume O_2 and produce CO_2
- 3 major stages

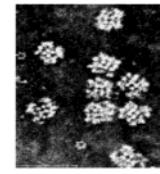


Aerobic Respiration

13

- Aerobic phase of catabolism is called respiration
- Cellular respiration: molecular process by which cells consume O_2 and produce CO_2
- 3 major stages


Oxidize pyruvate to H_2O and CO_2

Source of pyruvate is not just from glycolysis


Oxidation of organic compounds to acetyl-coenzyme A is catalyzed by the Pyruvate Dehydrogenase Multienzyme Complex (PDC)

14

PDC

- Pyruvate + CoA + NAD⁺ \rightarrow acetyl-CoA + CO₂ + NADH
- Bridges glycolysis (anaerobic metabolism) to TCA cycle (aerobic metabolism)
- mitochondria of eukaryotic cells, and cytosol of prokaryotic cells
- Cluster of 3 enzymes

16

Oxidation of organic compounds to acetyl-coenzyme A is catalyzed by the Pyruvate Dehydrogenase Multienzyme Complex (PDC)

PDC consists of 3 enzymes

- Pyruvate dehydrogenase (E₁)
 - TPP cofactor
- Dihydrolipoyl transacetylase (E₂)
 - Lipoyamide cofactor, CoA coenzymes
- Dihydrolipoyl dehydrogenase (E₃)
 - FAD cofactor, NAD⁺ coenzyme

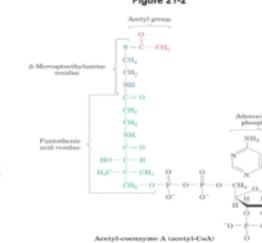
• Eukaryotic PDC is complex!

17

PDC

- Pyruvate + CoA + NAD⁺ \rightarrow acetyl-CoA + CO₂ + NADH

- Cluster of enzymes
- Bridges glycolysis (anaerobic metabolism) to TCA cycle (aerobic metabolism)
- mitochondria of eukaryotic cells, and cytosol of prokaryotic cells
- Catalyzes oxidative decarboxylation of pyruvate


Advantages of a multienzyme complex

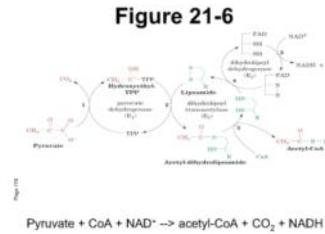
- Diffusion of substrates is minimized between active sites
- Minimize side rxns
- Potential for coordinate control of activity

18

- Noncovalently associated cluster of enzymes
- Cluster of 3 enzymes (picture shows more than 3 since more than one cluster clumped together)

Figure 21-2

19

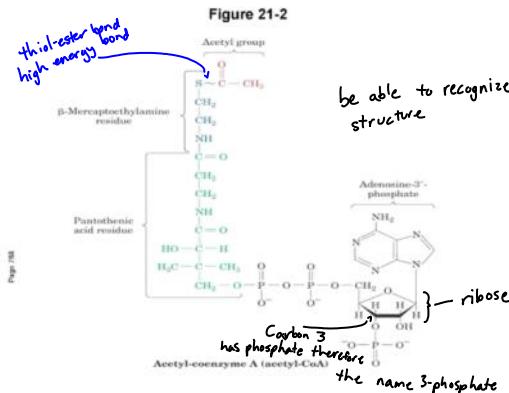

Acetyl-CoA Formation Occurs in Five Rxns

- E₁ catalyzes rxns 1 & 2
- E₂ catalyzes rxn 3
- E₃ catalyzes rxn 4 & 5

20

Missing Slide: Advantages of multienzyme complex

- Diffusion of substrates is minimized between active sites
- Minimize side reactions
- Potential for coordinate control of activity

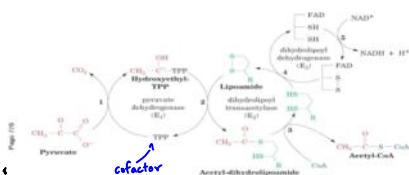

Pyruvate + CoA + NAD⁺ -> acetyl-CoA + CO₂ + NADH

21

Table 21-1

Cofactor	Location	Function
Thiamine pyrophosphate (TPP)	Bound to E ₁	Decarboxylates pyruvate, yielding a hydroxethyl-TPP cation
Linoleic acid	Covaently linked to a Lys on E ₂	Accepts the hydroxethyl carbon from TPP
Coenzyme A (CoA)	Substrate for E ₁	Accepts the acetyl group from acetyl-dihydroxyacetone phosphate
FAD (Flavin adenine dinucleotide)	Bound to E ₂	Reduced by FADH ₂
Nicotinamide adenine dinucleotide (NAD ⁺)	Substrate for E ₂	Reduced by FADH ₂

22


Page 171

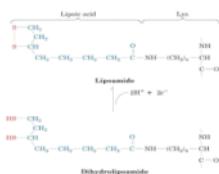
Missing Slide: Acetyl-CoA formation Occurs in Five Reactions

- E₁ catalyzes reactions 1 & 2
- E₂ catalyzes reaction 3
- E₃ catalyzes reaction 4 & 5

Pyruvate (3C compound) to acetyl-CoA (2 carbon compound)
CO₂ is byproduct
NADH is produced too (so NAD⁺ is used in reaction)

Figure 21-6

Overall Reaction:
Pyruvate + CoA + NAD⁺ -> acetyl-CoA + CO₂ + NADH


Table 21-1

Cofactor	Location	Function
Thiamine pyrophosphate (TPP)	Bound to E ₁	Decarboxylates pyruvate, yielding a hydroxethyl-TPP carbonion
Lipoic acid	Cosynthetically linked to a Lys on E ₁ (lipoylase)	Accepts the hydroxethyl carbonion from TPP and passes it on
Coenzyme A (CoA)	Substrate for E ₂	Accepts the acetyl group from acetyl-dihydrolipoylde
Flavin adenine dinucleotide (FAD)	Bound to E ₃	Reduced by dihydrolipoamide
Nicotinamide adenine dinucleotide (NAD ⁺)	Substrate for E ₃	Reduced by FADH ₂

Page 771

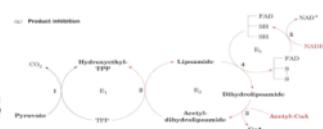

Did not cover from here on

Figure 21-7

Page 771

Figure 21-17a

Page 771

Figure 21-17b

Page 771