

Notes:1126

Audio recording started: 10:01 AM Monday, November 26, 2007

FINALSLIDES:

The Citric Acid Cycle

Nov. 26, 2007

The Citric Acid Cycle

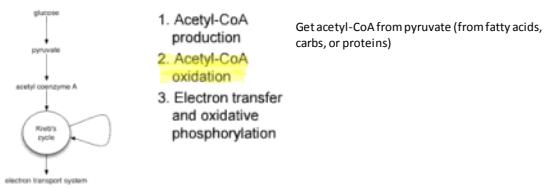
Nov. 26, 2007

There is hope!

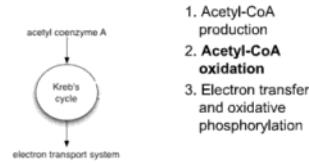
- Please study the lecture slides that are posted *after* lecture
- Quiz 5 is this week (20 pts)
- Quiz 6 next week (20 pts)
- Extra credit is being tallied and posted this week
- Find study buddies through VOH.
 - Network, network, network
 - 1.5 hours tends to be a good amount of time
 - Make everyone show up with a problem already worked out and ready to explain to the group
 - Assign a brief topic that each member *has* to teach the group
 - Stay on topic. Save the drama for your momma.

There is hope!

- Please study the lecture slides that are posted *after* lecture
- Quiz 5 is this week (20 pts)
- Quiz 6 next week (20 pts)
- Extra credit is being tallied and posted this week
- Find study buddies through VOH.
 - Network, network, network
 - 1.5 hours tends to be a good amount of time
 - Make everyone show up with a problem already worked out and ready to explain to the group
 - Assign a brief topic that each member *has* to teach the group
 - Stay on topic. Save the drama for your momma.

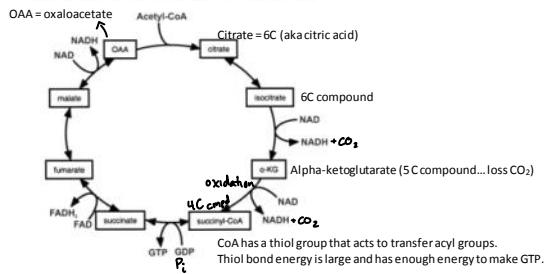

Overview

- Second stage of cellular respiration
- RXNS of TCA Cycle (AKA Citric and Kreb Cycle)

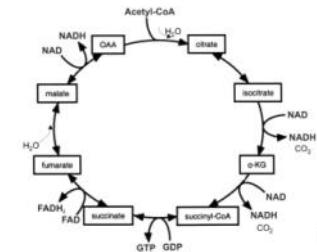

Overview

- Second stage of cellular respiration
- Rxns of the TCA Cycle

3 Stages of cellular respiration

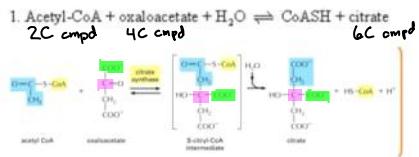


3 Stages of cellular respiration

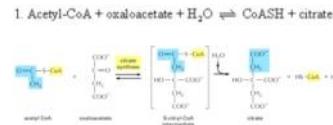


4

Reactions of the Citric Acid Cycle



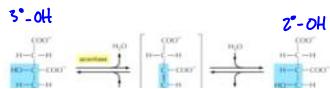
Reactions of the Citric Acid Cycle


5

Step 1 is catalyzed by citrate synthase

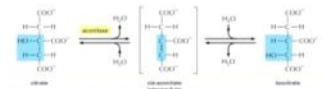
Citrate synthase = enzyme

Step 1 is catalyzed by citrate synthase


6

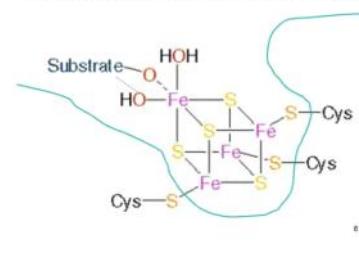
Step 2 is catalyzed by aconitase

Why would our cell bother with rearranging this:

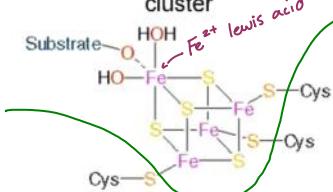

- 3° alcohols cannot be reduced without breaking C-C bond.
- 2° alcohols can be reduced more easily

2. Citrate ⇌ isocitrate

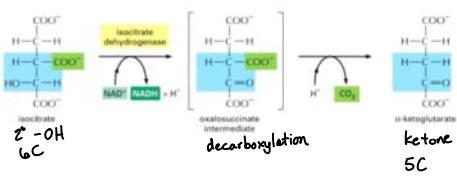
Step 2 is catalyzed by aconitase


2. Citrate ⇌ isocitrate

7



Aconitase utilizes an Fe-S cluster



Step 3 is catalyzed by isocitrate dehydrogenase

Aconitase utilizes an Fe-S cluster

Step 3 is catalyzed by isocitrate dehydrogenase

Coxidized into CO₂
NAD⁺ reduced to NADH

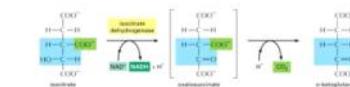
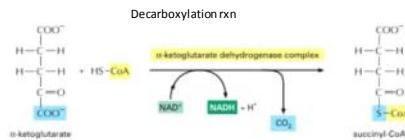
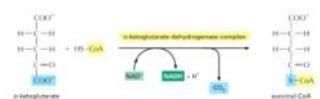
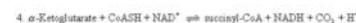


Figure 21-21 Probable reaction mechanism of isocitrate dehydrogenase.



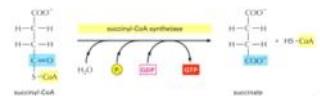
Missing Slide Figure 21-21



○ Mechanism of rxn 3

Step 4 is catalyzed by α-ketoglutarate dehydrogenase complex

Enzyme = alpha-ketoglutarate dehydrogenase complex

Step 4 is catalyzed by α-ketoglutarate dehydrogenase complex

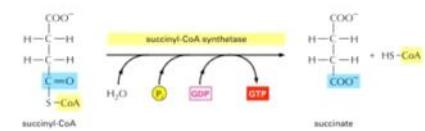

αKG DH Complex

αKG DH Complex Complex has 3 enzymes (looks very similar to pyruvate dehydrogenase complex) Probably evolutionarily related (homologous)	
Enzyme	Coenzyme
α-ketoglutarate dehydrogenase	Thiamine pyrophosphate
Dihydrolipoyl transsuccinylase	Lipoic acid, CoASH
Dihydrolipoyl dehydrogenase	FAD, NAD ⁺
Same name as in pyruvate dehydrogenase	

Enzyme	Coenzyme
α-ketoglutarate dehydrogenase	Thiamine pyrophosphate
Dihydrolipoyl transsuccinylase	Lipoic acid, CoASH
Dihydrolipoyl dehydrogenase	FAD, NAD ⁺

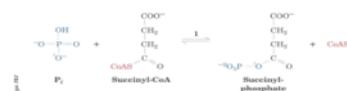
12

Step 5 is catalyzed by
Succinyl-CoA synthetase


13

Step 5 is catalyzed by
Succinyl-CoA synthetase

Named for reverse reaction.



GTP has guanosine
ATP has adenosine

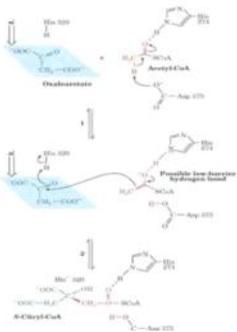

High energy thiol-ester linkage used
to make high energy compound GTP

Figure 21-22a
Formation of succinyl phosphate, a "high-energy" mixed anhydride

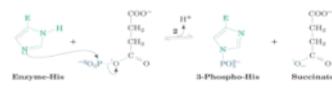

14

Figure 21-19 Mechanism and stereochemistry of citrate synthase rxn

Page 783

Figure 21-22b Formation of phosphoryl-His, a "high-energy" intermediate

15

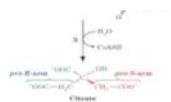


Figure 21-21 Probable reaction mechanism of isocitrate dehydrogenase.

Page 165

Figure 21-22a
Formation of succinyl phosphate, a "high-energy" mixed anhydride

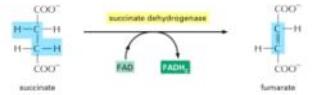
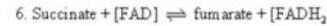
Figure 21-22c
Transfer of the phosphoryl group to GTP, forming GTP

16

The first five steps of the TCA cycle produce NADH, CO₂, GTP (ATP), & succinate

17

Step 6 is catalyzed by succinate dehydrogenase

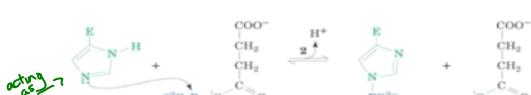


Figure 21-23
Covalent attachment of FAD to a His residue of succinate dehydrogenase.

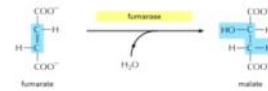
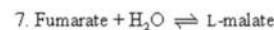


18

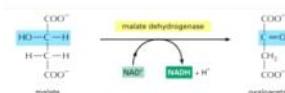
Figure 21-22b Formation of phosphoryl-His, a "high-energy" intermediate

19

Step 7 is catalyzed by fumarase

20

Figure 21-22c


Transfer of the phosphoryl group to GDP, forming GTP

Don't need to know structure of G part

Page 21/21

Step 8 is catalyzed by malate dehydrogenase

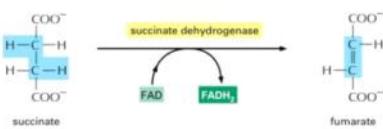
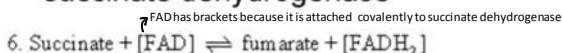


21

The first five steps of the TCA cycle produce NADH, CO₂, GTP (ATP), & succinate

- First 5 steps:
 - Producing NADH
 - Producing CO₂
 - Produce GTP or ATP
 - Produce succinate

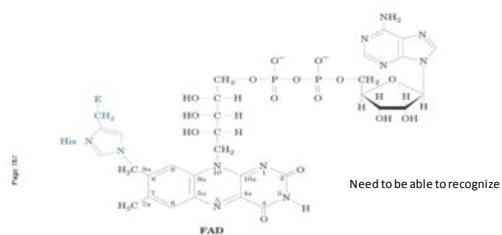
Net for rxns 1 to 8

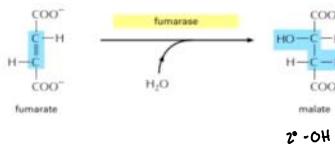
Net for glycolysis and TCA cycle

22

Step 6 is catalyzed by succinate dehydrogenase

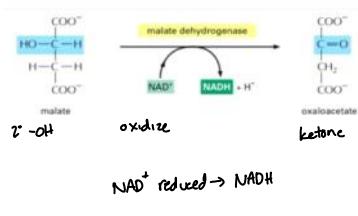

Succinate dehydrogenase is only enzyme bound to inner mitochondria membrane

Stereospecific but won't go into details of this.

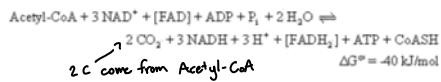

Covalement attachment of FAD to a His residue of succinate dehydrogenase

Part of reasoning that succinate dehydrogenase is stuck to mitochondria
Coenzyme Q (found in inner membrane space of mitochondria) is involved in oxidizing FADH₂ back into FAD

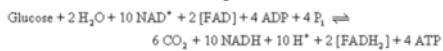
Figure 21-23



Step 7 is catalyzed by fumarase



Step 8 is catalyzed by malate dehydrogenase


FINALSTEP

Net for rxns 1 to 8

Net for glycolysis and TCA cycle

Table 21-2

Reaction	Enzyme	ΔG° (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	-5	-0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
5	Succinyl-CoA synthetase	-2.1	-0
6	Succinate dehydrogenase	+6	-0
7	Fumarase	-3.4	-0
8	Malate dehydrogenase	+29.7	-0

Do on own.

A typical intramitochondrial concentration of malate is 0.22 mM. If the [NAD⁺]/[NADH] ratio in mitochondria is 20 and if the malate dehydrogenase reaction is at equilibrium, calculate the intramitochondrial concentration of oxaloacetate at 25°C.

$$\begin{aligned} \Delta G^\circ &= -RT \ln K_{eq} \\ &= -(8.314 \text{ J/mol} \cdot \text{K})(298) \ln \left(\frac{[1]x}{[20][2.2 \times 10^{-4}]} \right) \\ \frac{-30,000 \text{ J/mol}}{2478 \text{ J/mol}} &= \ln (x/4.4 \times 10^{-3}) \\ -12.1 &= \ln (x/4.4 \times 10^{-3}) \\ x &= (5.6 \times 10^{-6})(4.4 \times 10^{-3}) \\ x &= [\text{oxaloacetate}] = 0.024 \mu\text{M} \end{aligned}$$