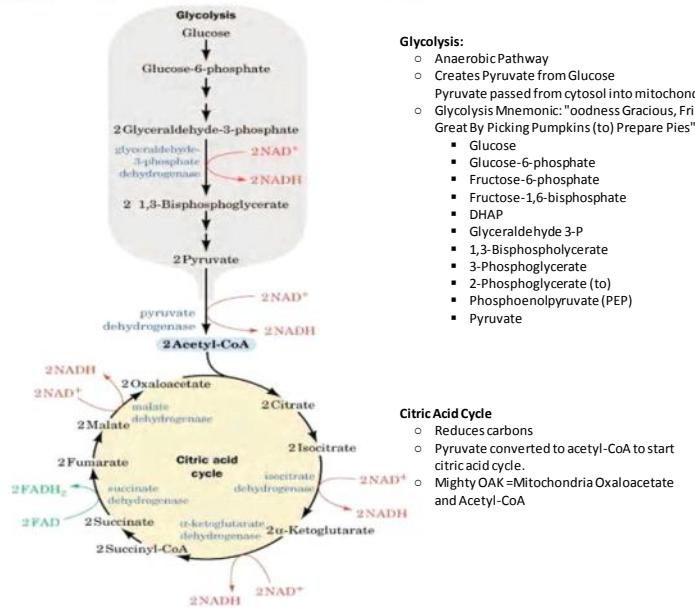


The Citric Acid Cycle Part II

Nov. 27, 2007

Overview

- Frequently asked questions
- Regulation of TCA Cycle Enzymes
- Carbon tracing (keeping track of carbons)


Do I need to know... ?

- Understand ΔG° and ΔG values and what they mean
Generally large negative delta G reaction will be regulated
- Understand mechanisms including the intermediates
- Understand arrow pushing

Why is Fructose-1,6-bisphosphate a deinhibitor of phosphofructokinase?

- The positive effect of F1,6B on PFK activity is well documented, but I don't know how it induces activity.

How is glycolysis and the TCA cycle linked?

Glycolysis:

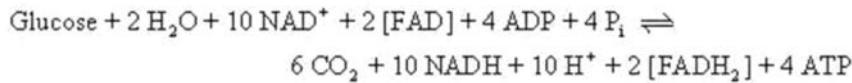
- Anaerobic Pathway
- Creates Pyruvate from Glucose
- Pyruvate passed from cytosol into mitochondria.
- Glycolysis Mnemonic: "oodness Gracious, Friendly Franklin Did Great By Picking Pumpkins (to) Prepare Pies"

- Glucose
- Glucose-6-phosphate
- Fructose-6-phosphate
- Fructose-1,6-bisphosphate
- DHAP
- Glyceraldehyde 3-P
- 1,3-Bisphosphoglycerate
- 3-Phosphoglycerate
- 2-Phosphoglycerate (to)
- Phosphoenolpyruvate (PEP)
- Pyruvate

Citric Acid Cycle

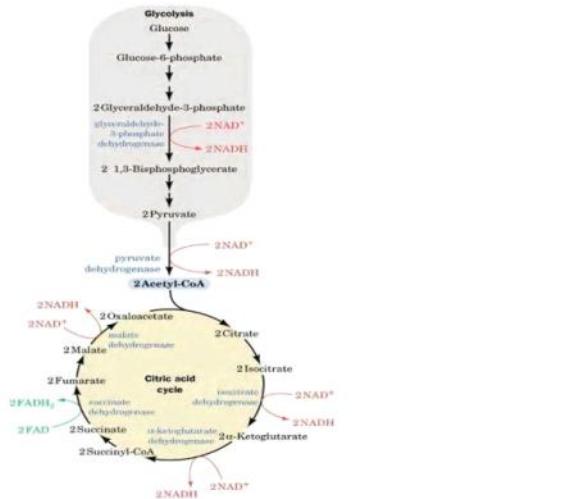
- Reduces carbons
- Pyruvate converted to acetyl-CoA to start citric acid cycle.
- Mighty OAK=Mitochondria Oxaloacetate and Acetyl-CoA

NAD⁺ and FAD


- Why is one charged and the other isn't?
- $\text{NAD}^+ + \text{H}^+ + 2\text{e}^- \leftrightarrow \text{NADH}$
- $\text{FAD} + 2\text{H}^+ + 2\text{e}^- \leftrightarrow \text{FADH}_2$

NAD⁺ is oxidized state

FAD is oxidized state

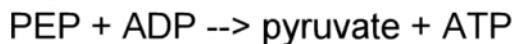

Where is the charge for FAD? FADH₂ balances charge

Net for glycolysis and TCA cycle

- Why is there a net of 10 NAD⁺?

2 NADH from glycolysis
2x4 from Citric Acid Cycle
Pyruvate to acetyl CoA = 2 more
Total: 10 NADH

Why are some kinases named after the reverse reaction?


- a) Biochemists around the world have plotted against intro biochem students
- b) Biochemists first discovered the reverse reaction
- c) Kinase is so much fun to say

Kinases

enzymes that transfer a phosphoryl group from a nucleoside triphosphate to an acceptor molecule

catalyze a phosphorylation rxn

E.g. Pyruvate kinase

How do we classify all these new enzymes we have learned?

Class	Subclass	Reaction
Oxidoreductase	dehydrogenase	Transfer of a hydride ion
	oxidase	O ₂ is the electron acceptor
	oxygenase	O ₂ is directly incorporated into the substrate
	reductase	Electron transfer between any 2 compounds
Transferase	kinase	Transfer of phosphoryl group(s) between a nucleoside triphosphate and another compound
	aminotransferase, transaminase	Transfer of an amino group between compounds
Hydrolase	phosphatase	Hydrolysis of a single bond between a compound and a phosphoryl group to generate P _i
	peptidase, protease, proteinase	Hydrolysis of a peptide bond
	glycosidase	Hydrolysis of a glycosidic bond
Lyase	synthase	A compound with a double bond combines with another compound to make a new compound that has a single bond
Isomerase	mutase	Intramolecular rearrangement of a functional group from one position to another
Ligase	synthetase	Formation of a new bond at the expense of ATP (GTP) hydrolysis

Another mnemonic

- Cofactors of pyruvate DH and a-KG DH complexes
 - Tender loving Care for Nobody
 - Tiamine pyrophosphate, lipoic acid, CoA, FAD, NAD

End of FAQ

- Now it's time for a deeper

- Cofactors of pyruvate DH and a-KG DH complexes
 - Tender loving Care for Nobody
 - Tiamine pyrophosphate, lipoic acid, CoA, FAD, NAD

End of FAQ

- Now it's time for a deeper understanding of the TCA cycle.
 - More detail about some of steps
 - Regulation of the cycle

More Detail About Some of the TCA Cycle Steps

Reaction	Enzyme	$\Delta G^{\circ\prime}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
5	Succinyl-CoA synthetase	-2.1	~0
6	Succinate dehydrogenase	+6	~0
7	Fumarase	-3.4	~0
8	Malate dehydrogenase	+29.7	~0

- Why does succinate DH use FAD instead of NAD⁺?
- Why is the malate DH rxn reversible but its $\Delta G^{\circ\prime}$ value is a large positive number?
- What happens to the NADHs and FADH₂s?

FAD is oxidizes alkanes or alkenes, whereas NAD⁺ oxidizes alcohols to aldehydes or ketones. Oxidation of alkane to alkene is sufficiently exergonic to reduce FAD to FADH₂ but not to reduce NAD⁺ to NADH.

Because it forms oxaloacetate which combines with acetyl-CoA with a more exergonic reaction at -31.5 kJ/mol

Go onto electron transport chain and oxidative phosphorylation.

Regulation of TCA Cycle Enzymes

Reaction	Enzyme	$\Delta G^{\circ\circ}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
Page 790	Succinyl-CoA synthetase	-2.1	~0
	Succinate dehydrogenase	+6	~0
	Fumarase	-3.4	~0
	Malate dehydrogenase	+29.7	~0

- What enzymes are regulated?
- What is the RDS?
- Positive and negative effectors?

3 Regulated Steps in TCA:
o Steps 1,3,4

Reaction 1:
o RDS
o Regulated step

Rxn 1: First Regulated Step

Reaction	Enzyme	$\Delta G^{\circ\circ}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
Page 790	Succinyl-CoA synthetase	-2.1	~0
	Succinate dehydrogenase	+6	~0
	Fumarase	-3.4	~0
	Malate dehydrogenase	+29.7	~0

- Rxn 1
- RDS
- Highly spontaneous
- Enough energy to make ATP but it doesn't
- Citrate is symmetric but also prochiral
 - Citric synthase - oxalacetate and acetyl-CoA to citrate
 - Prochiral - can distinguish one end of molecule from the other
- Positive effectors:
 - ADP
- Negative effectors
 - ATP, NADH, Citrate, Succinyl-CoA
- Acetyl CoA and OAA availability also effect the rxn

Rxn 2

Reaction	Enzyme	$\Delta G^{\circ\circ}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
5	Succinyl-CoA synthetase	-2.1	~0
6	Succinate dehydrogenase	+6	~0
7	Fumarase	-3.4	~0
8	Malate dehydrogenase	+29.7	~0

- Rxn 2
- Reversible
- Not significantly regulated
- At equilibrium 91% citrate, 6% cis-aconitate, 3% isocitrate
- Stereospecific rxn
- Isocitrate is chiral

Page 790

Rxn 3: Second regulated step

Reaction	Enzyme	$\Delta G^{\circ\circ}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
5	Succinyl-CoA synthetase	-2.1	~0
6	Succinate dehydrogenase	+6	~0
7	Fumarase	-3.4	~0
8	Malate dehydrogenase	+29.7	~0

- Rxn 3
- Regulated rxn
- Positive effectors
 - ADP, NAD+, Ca²⁺ stimulates glycogen breakdown. Glycogen is storage molecule of glucose in animals.
- Negative effectors
 - ATP, NADH
- In *E. coli*, reversible phosphorylation inhibits isocitrate binding

Page 790

Rxn 4: Last regulated step

Alpha-ketoglutarate dehydrogenase complex

Reaction	Enzyme	$\Delta G^{\circ\prime}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
5	Succinyl-CoA synthetase	-2.1	~0
6	Succinate dehydrogenase	+6	~0
7	Fumarase	-3.4	~0
8	Malate dehydrogenase	+29.7	~0

Page 790

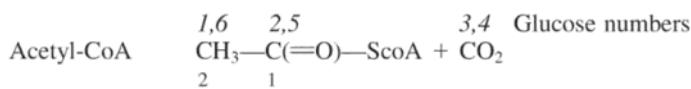
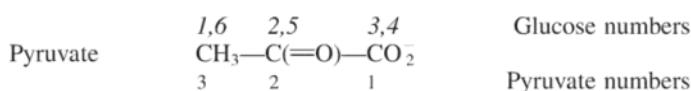
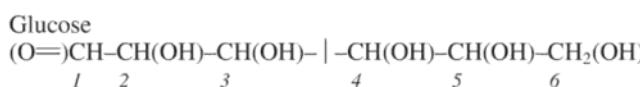
- Rxn 4
- E_3 is identical between PDH complex and α -KG DH complex
- Last regulated step of cycle
- Positive effectors
 - Ca^{2+}
- Negative effectors
 - ATP, NADH, Succinyl-CoA
- The rest of the rxns are not significantly regulated

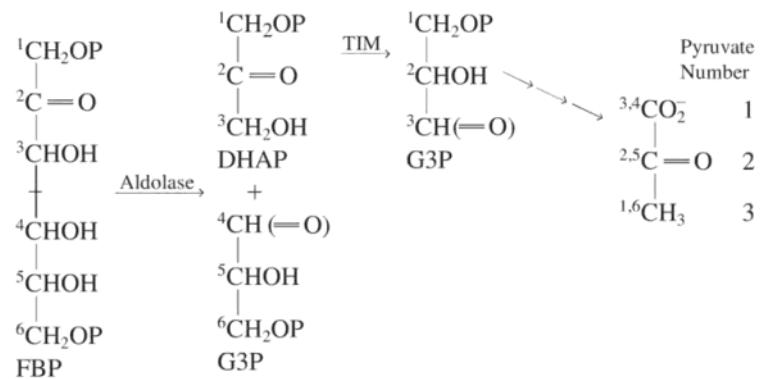
Rxn 6: Why is a covalently linked FAD used?

Reaction	Enzyme	$\Delta G^{\circ\prime}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
5	Succinyl-CoA synthetase	-2.1	~0
6	Succinate dehydrogenase	+6	~0
7	Fumarase	-3.4	~0
8	Malate dehydrogenase	+29.7	~0

Page 790

- The oxidation of an alkane to alkene is exergonic enough to reduce FAD, but not NAD⁺
- Covalent linkage of FAD to ~~succinyl-CoA~~ succinate dehydrogenase synthetase provides a more favorable microenvironment for its reduction
- NAD⁺ funx to oxidize alcohols to aldehydes or ketones




Rxn 8: How does it go in the forward direction despite a large positive ΔG° ?


Reaction	Enzyme	$\Delta G^{\circ\prime}$ (kJ · mol ⁻¹)	ΔG (kJ · mol ⁻¹)
1	Citrate synthase	-31.5	Negative
2	Aconitase	~5	~0
3	Isocitrate dehydrogenase	-21	Negative
4	α -Ketoglutarate dehydrogenase multienzyme complex	-33	Negative
5	Succinyl-CoA synthetase	-2.1	~0
6	Succinate dehydrogenase	+6	~0
7	Fumarase	-3.4	~0
8	Malate dehydrogenase	+29.7	~0

- The energy of rxn 1 is used to drive rxn 8

Carbon Tracing

GLUCOSE TO PYRUVATE

TCA CYCLE

The two carbons entering from acetyl-CoA do not leave as CO_2 on the first cycle.

Carbons 2 and 3 of succinate are equivalent.
Carbons 1 and 4 of succinate are equivalent.