

Notes 11/28

Wednesday, November 28, 2007
10:04 AM

Notes 1128

Audio recording started: 10:05 AM Wednesday, November 28, 2007

Amphibolic Nature of the TCA Cycle

Nov. 28, 2007

Quiz #6 FYI

- Same as for glycolysis,
- memorize **TCA cycle** in terms of all enzyme names, intermediate names and structures, and cofactor names (e.g. NADH/GTP/H₂O/FADH₂) for all the steps. Also know the net equation for both glycolysis and the TCA pathway – glucose to CO₂.

2

Slide 3: Overview

- What does it mean to be amphibolic

Overview

- What does it mean to be amphibolic?
- Anaplerotic reactions
- Pathways that utilize TCA cycle intermediates
- Gluconeogenesis is involved in anaplerotic rxns
- Pyruvate carboxylase

3

• Slide 4: TCA Cycle is amphibolic

- Amphibolic = both anabolic and catabolic
- Anaplerotic reactions = reactions that "fill up" TCA cycle intermediates
 - TCA cycle intermediates can be shuttled off to other reactions. Intermediates must be replenished... these reactions are referred to as anaplerotic

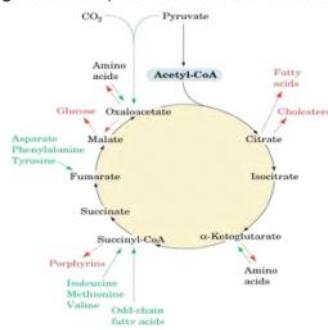
TCA cycle is amphibolic

- Amphibolic = both anabolic and catabolic
- Anaplerotic reactions = rxns that "fill up" TCA cycle intermediates

4

• Slide 5: Anaplerotic Reactions

- a. Pyruvate + HCO_3^- + ATP \leftrightarrow OAA + ADP + P_i
 - Pyruvate isn't involved in creating energy directly and must undergo TCA cycle
 - Pyruvate can be used to directly make OAA
 - Enzyme: Pyruvate Carboxylase
 - Commonly happens in liver and kidneys
- b. PEP + CO_2 + GDP \leftrightarrow OAA + GTP
 - Enzyme: PEP (phosphoenolpyruvate) carboxykinase
 - Occurs in heart and skeletal muscle
- c. PEP + HCO_3^- \leftrightarrow OAA + P_i
 - PEP is high energy compound and this energy is harnessed for reaction
 - Enzyme: PEP Carboxylase
- o Anaplerotic Reactions tend to form OAA
 - Because it is starting molecule of TCA cycle
- d. Pyruvate + HCO_3^- + NAD(P)H \leftrightarrow malate + NAD(P)^+
 - Enzyme: malic enzyme
 - Similar to reaction 1
 - Malate can be transported from mitochondria to cytosol (OAA cannot do this)


Anaplerotic Reactions

1. Pyruvate + HCO_3^- + ATP \leftrightarrow OAA + ADP + P_i
2. PEP + CO_2 + GDP \leftrightarrow OAA + GTP
3. PEP + HCO_3^- \leftrightarrow OAA + P_i
4. Pyruvate + HCO_3^- + NAD(P)H \leftrightarrow malate + NAD(P)^+

5

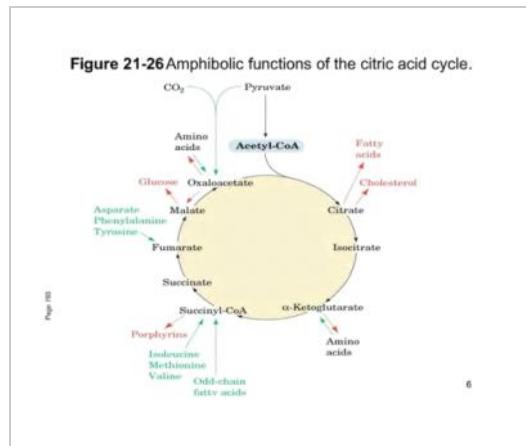
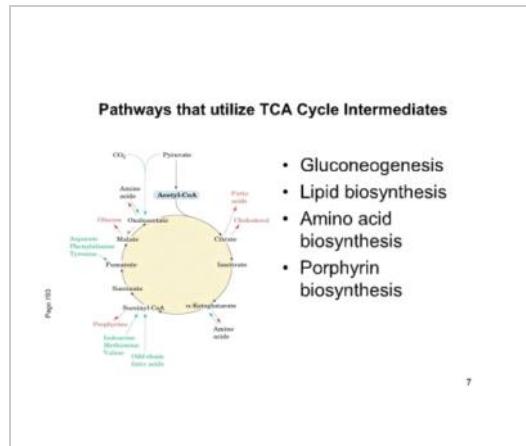
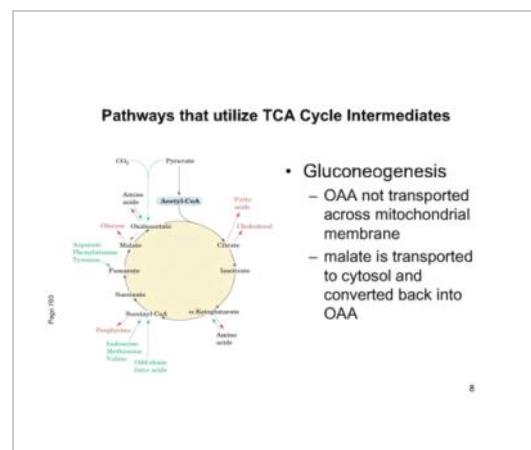
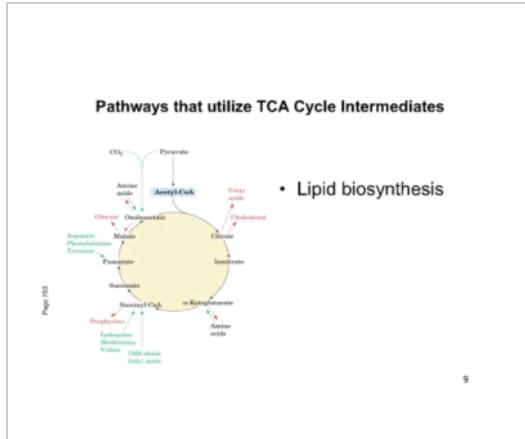

- Slide 6: Figure 21-26 Amphibolic functions of the citric acid cycle
 - o Outlines amphibolic reactions
 - o Many of the reactions are not committed only to TCA cycle
 - o Porphyrins: used to make heme
 - o Oxaloacetate is precursor to gluconeogenesis

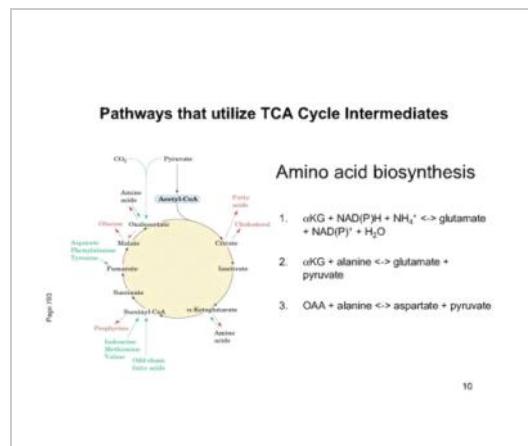
Figure 21-26 Amphibolic functions of the citric acid cycle.

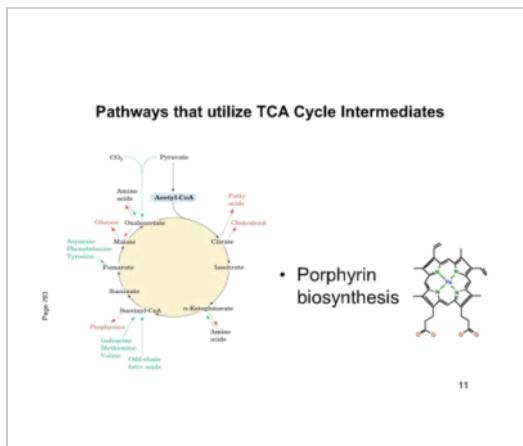


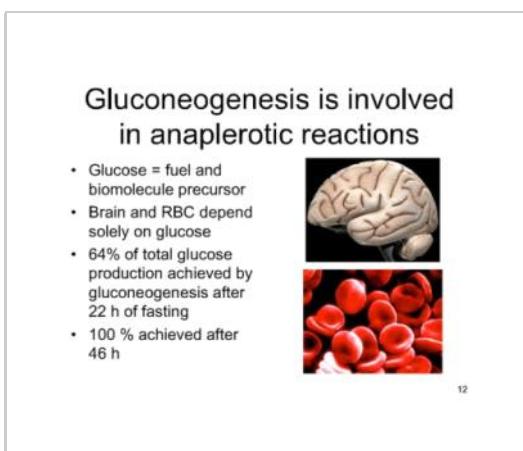
6

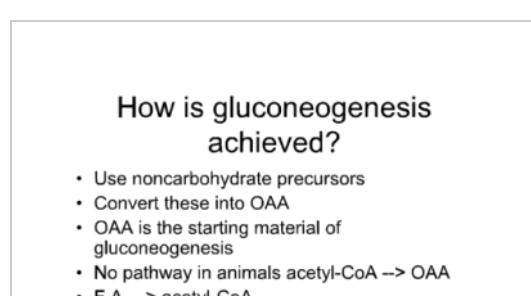

- Outlines amphibolic reactions
- Many of the reactions are not committed only to TCA cycle
- Porphyrins: used to make heme
- Oxaloacetate is precursor to gluconeogenesis


- Slide 7: Pathways that utilize TCA cycle Intermediates
 - Gluconeogenesis
 - Lipid biosynthesis
 - Amino acid biosynthesis
 - Porphyrin biosynthesis


- Slide 8: Pathways that utilize TCA cycle intermediates
 - Gluconeogenesis
 - OAA not transported across mitochondrial membrane
 - Malate is transported to cytosol and converted back into OAA


- Slide 9: Pathways that utilize Tca Cycle Intermediates
 - Lipid

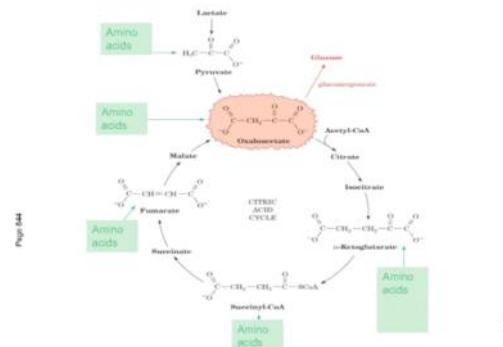

- Slide 10: Amino Acid biosynthesis
 - a. $\alpha\text{KG} + \text{NAD(P)H} + \text{NH}_4^+ \leftrightarrow \text{glutamate} + \text{NAD(P)}^+ + \text{H}_2\text{O}$
 - Dehydration reaction results in water
 - Not covering specific enzyme
 - Referred to as deamination (named for reverse reaction)
 - b. $\alpha\text{KG} + \text{alanine} \leftrightarrow \text{glutamate} + \text{pyruvate}$
 - Referred to as transamination because it transfers amino group from alanine to αKG
 - c. $\text{OAA} + \text{alanine} \leftrightarrow \text{aspartate} + \text{pyruvate}$
 - Also transamination


- Slide 11: Pathways that utilize TCA Cycle Intermediates
 - Porphyrin biosynthesis (chem 153C)
 - We won't get into detail or study mechanism

- Slide 12: Gluconeogenesis is involved in anaplerotic reactions
 - Glucose fuel and biomolecule precursor
 - Brain and RBC depend solely on glucose as energy
 - 64% of total glucose production achieved by gluconeogenesis after 22h of fasting
 - 100% achieved after 46h

- Slide 13: How is gluconeogenesis achieved?
 - Use noncarbohydrate precursors
 - Convert non carbohydrate precursors into OAA
 - OAA is starting material of gluconeogenesis
 - No pathway in animals: acetyl-CoA → OAA
 - Fatty acid → acetyl-CoA
 - Animals can't use fatty acids to make glucose
 - Plants can do this via glyoxylate pathway.
 - Plant seeds are rich in oil (fatty acids)
 - Plant embryo inside seed uses these fatty acids as energy

- OAA is starting material of gluconeogenesis
- No pathway in animals: acetyl-CoA → OAA
- Fatty acid → acetyl-CoA
 - Animals can't use fatty acids to make glucose
 - Plants can do this via glyoxylate pathway.
 - Plant seeds are rich in oil (fatty acids)
 - Plant embryo inside seed uses these fatty acids as energy


How is gluconeogenesis achieved?

- Use noncarbohydrate precursors
- Convert these into OAA
- OAA is the starting material of gluconeogenesis
- No pathway in animals acetyl-CoA → OAA
- F.A. → acetyl-CoA
 - Animals can't use F.A. to make glucose
 - Plants can do this via glyoxylate pathway

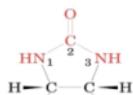
13

- Slide 14: Figure 23-1 Modified: Pathways converting lactate, pyruvate, and citric acid cycle intermediates to oxaloacetate
 - Lactate can be converted to pyruvate which can be converted to OAA

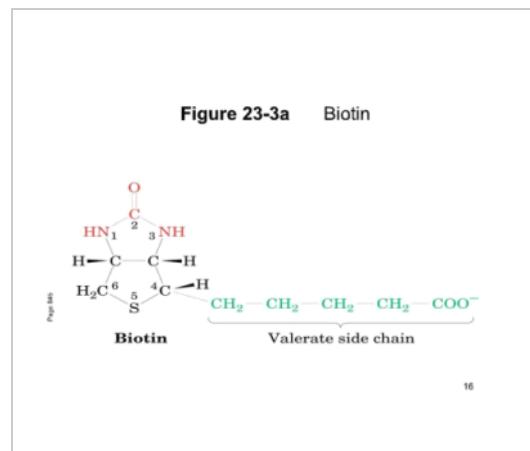
Figure 23-1 Modified Pathways converting lactate, pyruvate, and citric acid cycle intermediates to oxaloacetate.

14

- Slide 15: Pyruvate carboxylase is an anaplerotic enzyme
 - Catalyzes the carboxylation of pyruvate to oxaloacetate
 - Reaction is driven by ATP
 - Keep in mind:
 - OAA is a "high-energy" intermediate that can be used to create PEP in the presence of PEP carboxykinase


Pyruvate carboxylase is an anaplerotic enzyme

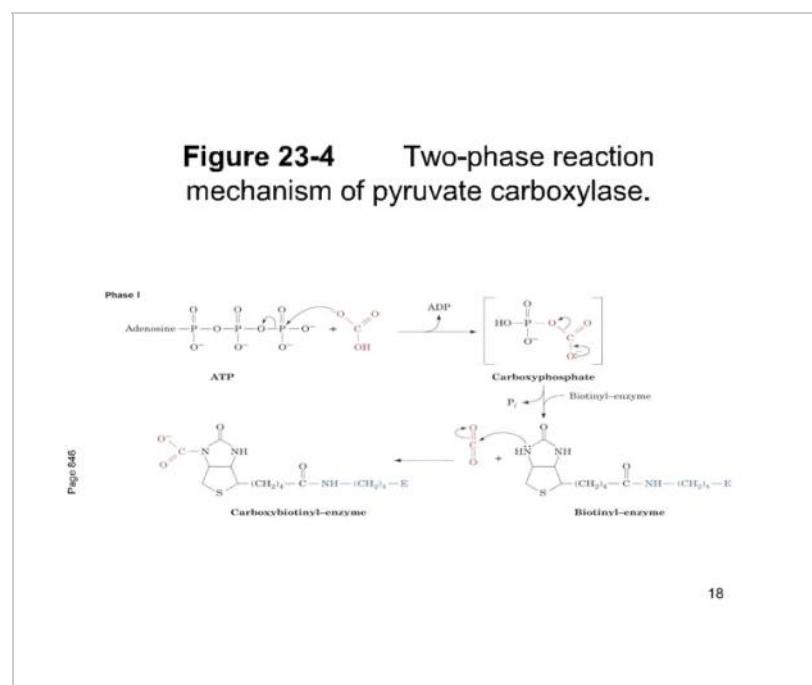
- Catalyzes the carboxylation of pyruvate to oxaloacetate
- Rxn is driven by ATP
- Keep in mind:
 - OAA is a "high-energy" intermediate that can be used to create PEP in the presence of PEP carboxykinase


15

- Slide 16: Figure 23-3a Biotin
 - Biotin is a cofactor
 - Need to recognize structure of biotin (not draw from scratch)
 - Function of biotin: CO₂ carrier
 - Biotin has a valerate side chain.

Figure 23-3a Biotin

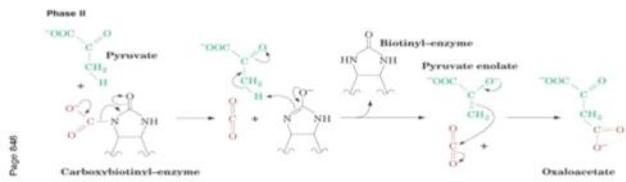
- Biotin is a coenzyme
- Need to recognize structure of biotin (not draw from scratch)
- Function of biotin: CO_2 carrier
- Biotin has a valerate side chain.


- Slide 17: Figure 23-3b carboxybiotinyl-enzyme

- Slide 18: Figure 23-4 Two-phase reaction mechanism of pyruvate carboxylase

- Need to know mechanism
- 2 steps in mechanism
- Phase 1:
 - ATP and bicarbonate \rightarrow carboxyphosphate
 - Carboxyphosphate + biotinyl-enzyme \rightarrow carboxybiotinyl-enzyme

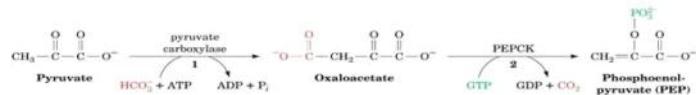
Figure 23-4 Two-phase reaction mechanism of pyruvate carboxylase.



- Side 19: figure 23-4 (continued) Two-phase reaction mechanism of pyruvate carboxylase. Phase II
- Phase 2:
 - Carboxybiotinyl-enzyme + pyruvate $\dots \rightarrow \dots$

Figure 23-4 (continued) Two-phase reaction mechanism of pyruvate carboxylase Phase II

- Carboxybiotinyl-enzyme + pyruvate ->->


Figure 23-4 (continued) Two-phase reaction mechanism of pyruvate carboxylase. Phase II

19

- Slide 20: Figure 23-2 conversion of pyruvate to oxaloacetate and then to phosphoenolpyruvate

Figure 23-2 Conversion of pyruvate to oxaloacetate and then to phosphoenolpyruvate.

20

- Slide 22: Acetyl-CoA Regulates Pyruvate Carboxylase
 - Acetyl-CoA signals the need for more OAA

Acetyl-CoA Regulates Pyruvate Carboxylase

- Acetyl-CoA signals the need for more OAA
- Acetyl-CoA = allosteric activator of pyruvate carboxylase

22

- Slide 21: Avidin is a protein that binds to biotin tightly
 - Avidin is found in egg whites (raw; denatured in cooked)

Avidin is a protein that binds biotin tightly

21