

Notes 11/30

Friday, November 30, 2007
9:59 AM

Notes 1130

Audio recording started: 10:02 AM Friday, November 30, 2007

Notes 1130

Audio recording started: 10:25 AM Friday, November 30, 2007

FINALSLIDES:

Glyoxylate Pathway, Electron Transport, and Oxidative Phosphorylation

Nov. 30, 2007

Glyoxylate Pathway, Electron Transport, and Oxidative Phosphorylation

Nov. 30, 2007

Announcements

- Quiz 6 next week
- Students in section 1D, Tuesday 1-2pm (Midge) will take the quiz with Rebecca in WGYH CS24 (Tues. Dec., 4th). Ask Rebecca for directions to the room.
- Final (rooms will be announced later)
 - Lec. 1: Tues. Dec. 11, 3 PM to 6 PM
 - Lec. 2: Thurs. Dec. 13, 3 PM to 6 PM
 - 300 points
 - About 100 points on "older" material
 - About 200 points on material covered since midterm

Announcements

- Quiz 6 next week
- Students in section 1D, Tuesday 1-2pm (Midge) will take the quiz with Rebecca in WGYH CS24 (Tues. Dec., 4th). Ask Rebecca for directions to the room.
- Final (rooms will be announced later)
 - Lec. 1: Tues. Dec. 11, 3 PM to 6 PM
 - Lec. 2: Thurs. Dec. 13, 3 PM to 6 PM
 - 300 points
 - About 100 points on "older" material
 - About 200 points on material covered since midterm

Genius is 1% inspiration and 99% perspiration. Accordingly a genius is often merely a talented person who has done all of his or her homework.

—Thomas Edison

When you get into a tight place and everything goes against you, till it seems as though you could not hang on a minute longer, never give up then, for that is just the place and time that the tide will turn.

—Harriet Beecher Stowe

Success seems to be connected with action. Successful people keep moving. They make mistakes, but they don't quit.

—Conrad Hilton

The only question to ask yourself is, how much are you willing to sacrifice to achieve this success?

—Larry Flynt

Genius is 1% inspiration and 99% perspiration. Accordingly a genius is often merely a talented person who has done all of his or her homework.

—Thomas Edison

When you get into a tight place and everything goes against you, till it seems as though you could not hang on a minute longer, never give up then, for that is just the place and time that the tide will turn.

—Harriet Beecher Stowe

Success seems to be connected with action. Successful people keep moving. They make mistakes, but they don't quit.

—Conrad Hilton

The only question to ask yourself is, how much are you willing to sacrifice to achieve this success?

—Larry Flynt

3

What some students are doing to get high scores in this class

- Studying every day
- Attending office hours with questions
- Actively attending lecture (staying awake, writing notes, asking questions)
- Asking questions immediately after lecture
- Reading Voet & Voet for deeper understanding
- Practice drawing structures and mechanisms over and over and over and over...
- In summary, the successful students are active in their education

What some students are doing to get high scores in this class

- Studying every day
- Attending office hours with questions
- Actively attending lecture (staying awake, writing notes, asking questions)
- Asking questions immediately after lecture
- Reading Voet & Voet for deeper understanding
- Practice drawing structures and mechanisms over and over and over and over...
- In summary, the successful students are active in their education

4

Overview

- Glyoxylate pathway
- Electron Transport and Oxidative Phosphorylation

Overview

- Clarification of previous topics
- Glyoxylate pathway
- Electron Transport and Oxidative Phosphorylation

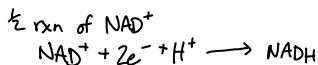
5

For clarification

Anaplerotic reactions

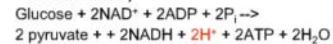
- Pyruvate carboxylase: liver, kidney
- PEP CK: heart, skeletal muscle
- PEP carboxylase: many types of cells of plants, yeast, bacteria
- Malic enzyme: widely distributed in eukaryotes and prokaryotes

For clarification

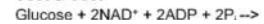

Anaplerotic reactions

- Pyruvate carboxylase: liver, kidney
- PEP CK: heart, skeletal muscle
- PEP carboxylase: many types of cells of plants, yeast, bacteria
- Malic enzyme: widely distributed in eukaryotes and prokaryotes

6

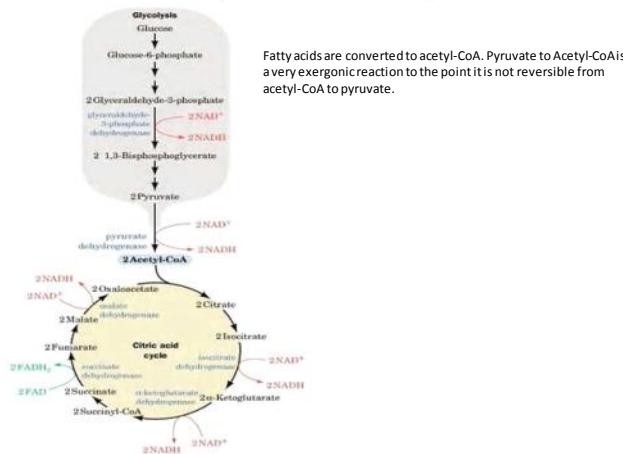

Missing slide: slide 8

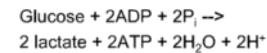
Now the homolactic fermentation balance sheet makes sense



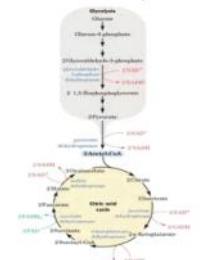
More clarification

Overall Balance Sheet of Glycolysis (from lecture notes)


Voet & Voet


Either is correct. From now on, and to keep things simple, use the V&V version.

Vertebrates cannot convert fatty acids to carbohydrates


Fatty acids are converted to acetyl-CoA. Pyruvate to Acetyl-CoA is a very exergonic reaction to the point it is not reversible from acetyl-CoA to pyruvate.

Now the homolactic fermentation balance sheet makes sense

Please don't agonize over balancing a water molecule or a proton. Know the intermediates, ATP, CO₂, Pi, etc.
Know the redox rxns of NAD+ and FAD.
Please understand what the molecules are doing and why they are present.

Vertebrates cannot convert fatty acids to carbohydrates

OAA can be converted into PEP, so why can't this be used for gluconeogenesis in vertebrates?

- OAA + GTP \leftrightarrow PEP + CO₂ + GDP

of carbons? I do not understand...

Glyoxylate Pathway

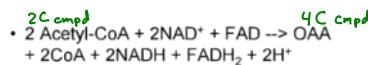
OAA can be converted into PEP, so why can't this be used for gluconeogenesis in vertebrates?

- OAA + GTP \leftrightarrow PEP + CO₂ + GDP

- Also called glyoxylate cycle
- Also called glyoxylate cycle, glyoxylate bypass, glyoxylate shunt
- Bypasses oxidative decarboxylation and thiol ester hydrolysis reactions of TCA cycle.
- Retains carbons to make OAA, but foregoes the production of NADH and GTP

Glyoxylate Pathway

Glyoxylate Pathway

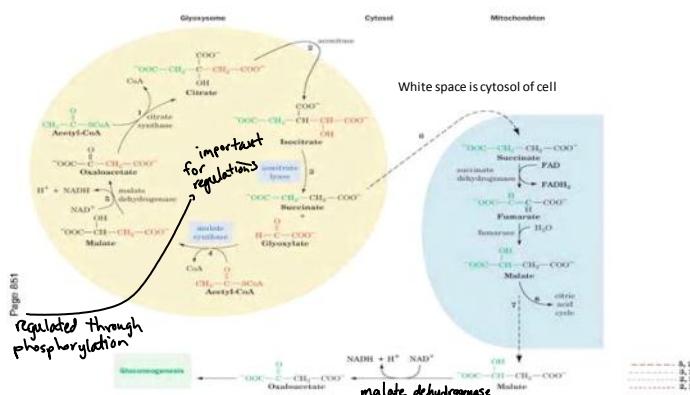

- Produces four-carbon compounds from acetate
- Seen in germinating seeds of plants, certain microbes that grow on acetate, but not in vertebrates
- Occurs in glyoxysomes of plants Plants have own organelle called glyoxysomes (where glyoxylate occurs)
- Involves several TCA cycle enzymes and two others:
 - Isocitrate lyase
 - Malate synthase
- Coordinately regulated with TCA cycle
- Net formation of succinate, OAA, and other TCA cycle intermediates

- Also called glyoxylate cycle, glyoxylate bypass, glyoxylate shunt
- Bypasses oxidative decarboxylation and thiol ester hydrolysis rxns of TCA cycle
- Retains carbons to make OAA, but foregoes the production of NADH and GTP

11

Glyoxylate pathway produces 4-carbon compounds from acetate

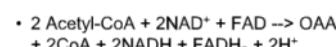
- Net conversion of acetate to oxaloacetate

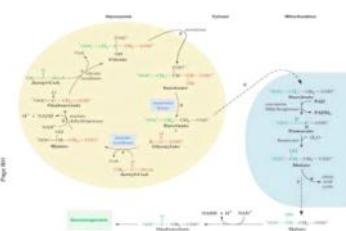


Glyoxylate Pathway

- Produces four-carbon compounds from acetate
- Seen in germinating seeds of plants, certain microbes that grow on acetate, but not in vertebrates
- Occurs in glyoxysomes of plants
- Involves several TCA cycle enzymes and two others:
 - Isocitrate lyase
 - Malate synthase
- Coordinately regulated with TCA cycle
- Net formation of succinate, OAA, and other TCA cycle intermediates

12


Figure 23-10 The glyoxylate cycle.


13

Glyoxylate pathway produces 4-carbon compounds from acetate

- Net conversion of acetate to oxaloacetate

Figure 23-10 The glyoxylate cycle.

14

Where can the glyoxylate pathway be found?

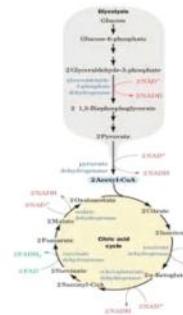
- Rumen microbes
- Germinating seeds
- *E. coli*
- *Mycobacterium tuberculosis*
- *Saccharomyces cerevisiae*
- *Candida albicans*

Where can the glyoxylate pathway be found?

- Rumen microbes
- Germinating seeds
- *E. coli*
- *Mycobacterium tuberculosis*
- *Saccharomyces cerevisiae*
- *Candida albicans*

15

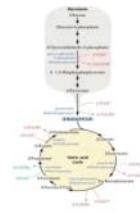
TCA and glyoxylate cycles are coordinately regulated


- Continuous interchange of intermediates between mitochondria, glyoxysomes, cytosol

TCA and glyoxylate cycles are coordinately regulated

- Continuous interchange of intermediates between mitochondria, glyoxysomes, cytosol in plants
- Isocitrate lyase is regulated by reversible phosphorylation

Electron Transport and Oxidative Phosphorylation

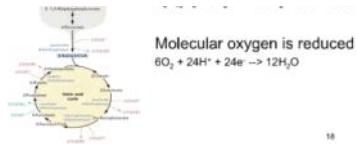

- Electrons are removed from glucose during its oxidation

Combustion rxn

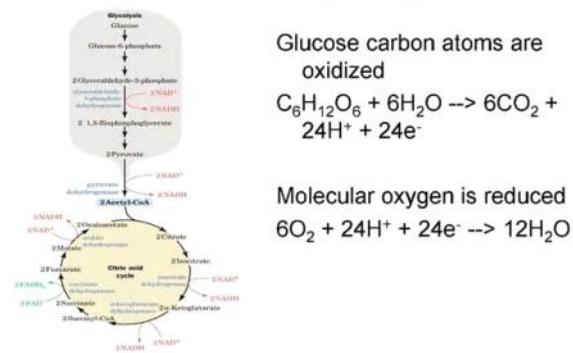
$$\frac{C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O}{}$$

- $\Delta G^\circ = -2823 \text{ kJ/mol}$

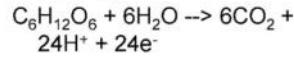
Electron Transport and Oxidative Phosphorylation


- Electrons are removed from glucose during its oxidation
- $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
- $\Delta G^\circ = -2823 \text{ kJ/mol}$

Electron Transport and Oxidative Phosphorylation

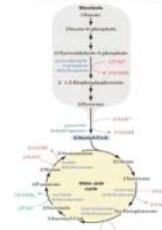

Glucose carbon atoms are oxidized

Electron Transport and Oxidative Phosphorylation



Molecular oxygen is reduced
 $6O_2 + 24H^+ + 24e^- \rightarrow 12H_2O$

18

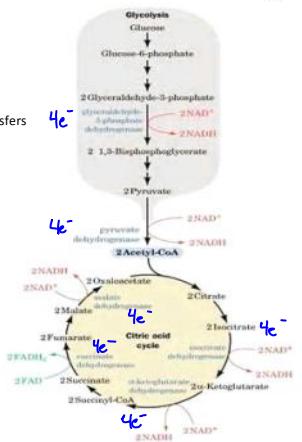


Glucose carbon atoms are oxidized

Molecular oxygen is reduced
 $6O_2 + 24H^+ + 24e^- \rightarrow 12H_2O$

The 12 electron pairs are not directly transferred to O_2

19

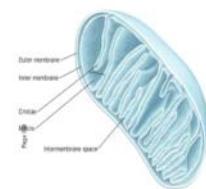

The 12 electron pairs are not directly transferred to O_2

10 pairs are found with NADH
2 pairs found with $FADH_2$

Ones in blue are involved in electron transfers


$$4 \times 6 = 24e^-$$

12 e⁻ pairs


Electrons are passed into the electron-transport chain

- Reoxidation of NADH and $FADH_2$
- Over 10 redox centers are sequentially used
- Subsequently, protons are expelled from the mitochondria
- pH gradient forms between intermembrane space and matrix
- Energy stored in pH gradient is used to make ATP via oxidative phosphorylation

20

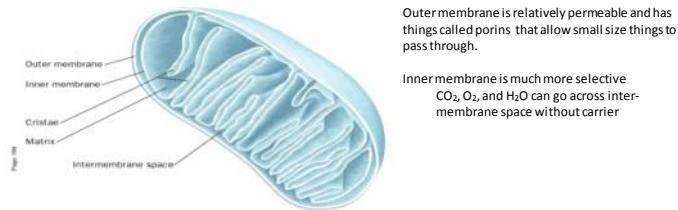
Figure 22-2b Mitochondria. (b) Cutaway diagram of a mitochondrion.

- Contains enzymes that mediate oxidative metabolism
- PDH, TCA cycle enzymes, enzymes catalyzing fatty acid oxidation, and players in electron transport & oxidative phosphorylation

21

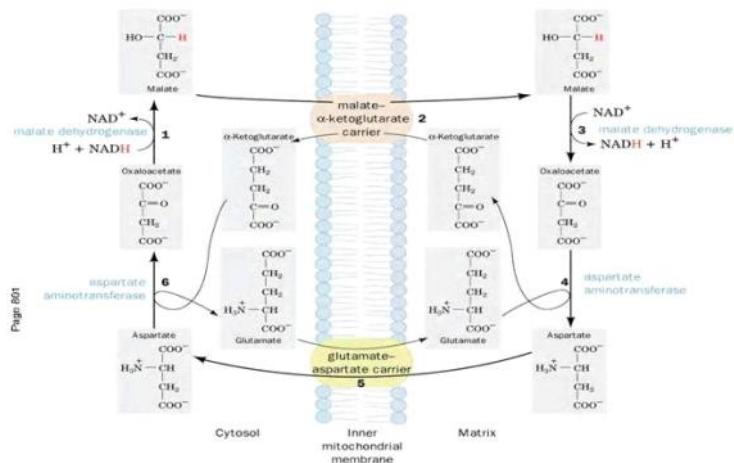
Electrons are passed into the electron-transport chain

- Reoxidation of NADH and FADH_2
- Over 10 redox centers are sequentially used
- Subsequently, protons are expelled from the mitochondria
- pH gradient forms between intermembrane space and matrix
- Energy stored in pH gradient is used to make ATP via oxidative phosphorylation


Cytoplasmic shuttle systems transport NADH electrons across the inner mitochondrial membrane

- Glycerophosphate shuttle in insects
- Malate-aspartate shuttle in mammals

22


Figure 22-2b Mitochondria. (b) Cutaway diagram of a mitochondrion.

Missing Slide: Cytoplasmic shuttle systems transport NADH electrons across the inner mitochondrial membrane

- Glycerophosphate shuttle in insects
- Malate-aspartate shuttle in mammals

Figure 22-7 The malate-aspartate shuttle.

