

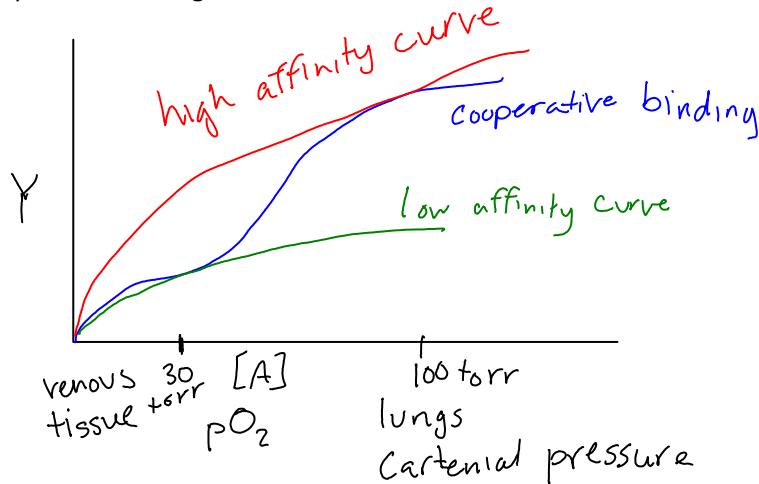
Notes: 11/6

Heather Graehl

Tuesday, November 06, 2007
9:56 AM

Notes 116

Audio recording started: 10:00 AM Tuesday, November 06, 2007


Bring photo ID to midterm.

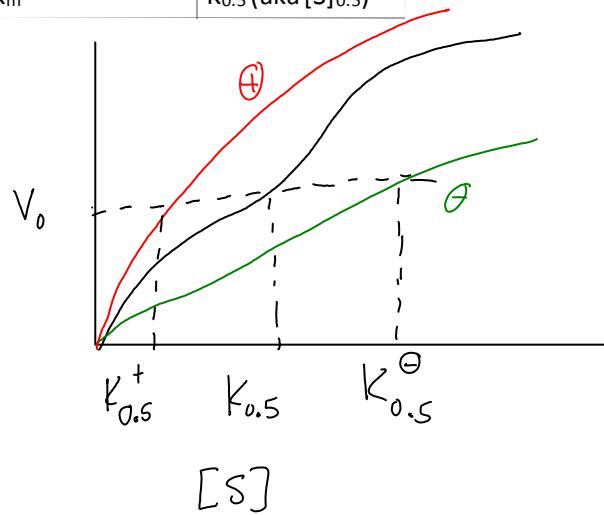
- Regulatory Enzymes
 - Example: serine proteases
 - Proteolytic cleavage (covalent)
 - Allosteric enzymes
 - Undergo a conformation changes in response to modulator binding.
 - Catalyze regulatory steps in many pathways
 - Kinetic properties diverge from M-M behavior
 - Metabolic pathway
 - Groups of enzymes work as teams
 - Enzyme team carries out a metabolic process in sequential pathway.
 - The reaction product of the 1st enzyme becomes the substrate of the next reaction and so on.
 - At least one enzyme catalyzes the slowest reaction (regulatory enzyme)
 - Regulatory Enzyme
 - Catalyzes the slowest reaction
 - Increase or decrease its activity in response to certain stimulus
 - Usually 1st enzyme of pathway (saves resources when 1st is regulated)

- 2 major classes of regulatory enzymes
 - Those enzymes affected by reversible covalent modification

- Example: methylation
- Modification may be all or none
- Those affected by binding of a reversible non-covalent binding compounds.
 - Permits fine-tuning of metabolic pathways
 - Allosteric enzymes
 - ◆ Bind regulatory compounds called allosteric modulator
- Allosteric Protein
 - A protein that undergoes a conformational change induced by the binding of a ligand (modulators)
 - Example of allosteric protein: hemoglobin
 - 2 different types:
 - Homotropic interaction - normal ligand + modulator are identical
 - ◆ Example: oxygen to hemoglobin
 - Heterotropic interaction - the normal ligand and the modulator are different
 - ◆ BPG doesn't bind on heme group... it binds elsewhere on hemoglobin
 - ◆ Heterotropic modulators of Hb
 - ◊ BPG, CO₂, H⁺, + Cl⁻ (negative heterotropic modulators)
 - Cooperative Binding Curve

- Sigmoidal binding: hybrid reflects a transition from low affinity state to high affinity state

- Back to Allosteric Enzymes
 - Conformational change in response to a modulator
 - Don't confuse with uncompetitive or mixed inhibitors with allosteric modulators because kinetic effects are different
 - Characteristics of allosteric enzymes
 - One or more allosteric sites (aka regulatory site) for binding modulator
 - Homotropic enzyme - active site and regulatory site are the same.
 - Heterotropic enzyme - active site and regulatory site are different
 - Generally large + oligomeric
 - Catalyze regulatory steps


- Allosteric Feedback Inhibition

Substrate

$\downarrow E_1$
 A
 $\downarrow E_2$
 B
 $\downarrow E_3$
 C
 $\downarrow E_4$
 D
 $\downarrow E_5$
 product

- Kinetic Properties of Allosteric Enzymes
 - Diverged from Mechalis-Mintin behavior

M-M kinetics	Sigmoid Kinetics
Hyperbolic curve	Sigmoidal curve
K_m	$K_{0.5}$ (aka $[S]_{0.5}$)

