

Electron Transport

Dec. 3, 2007

Dec. 3, 2007

Electron Transport

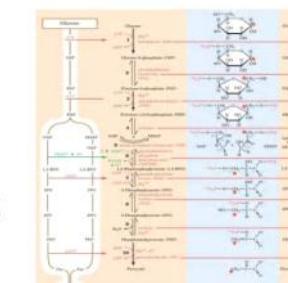
Overview

- Carbon tracing practice problem
- **Mitochondrial Transport Systems**
- Reduction potentials
- Electron-transport chain

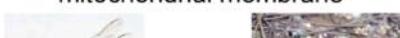
Overview

- Carbon tracing practice problem
- Mitochondrial transport systems
- Reduction potentials
- Electron-transport chain

Carbon tracing practice problem


- An experiment using ^{14}C -labeled carbon sources is carried out on a yeast extract maintained under strictly anaerobic conditions to produce ethanol. The experiment consists of incubating a very small amount of ^{14}C -labeled substrate with the yeast extract just long enough for each intermediate in the pathway to become labeled.

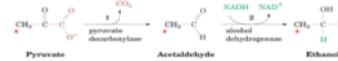
If $[1-^{14}\text{C}]$ glucose (glucose labeled at C-1 with ^{14}C) is used as a substrate, what is the location of ^{14}C in the product ethanol? Explain.


- Slide 3: Carbon tracing practice problem
 - An experiment using ^{14}C labeled carbon sources is carried out on a yeast extract maintained under strictly anaerobic conditions to produce ethanol. The experiment consists of incubating a very small amount of ^{14}C labeled substrate with the yeast extract just long enough for each intermediate in the pathway to become labeled.
 - If $[1-^{14}\text{C}]$ glucose (glucose labeled at C-1 with ^{14}C) is used as a substrate, what is the location of ^{14}C in the product ethanol? Explain!

Glucose goes through glycolysis so follow $1-^{14}\text{C}$ through.

- Slide 4: glycolysis diagram to aid in carbon tracing practice problem (red stars represent traced C¹⁴)
 - Step 2 from G6P to F6P 1-¹⁴C moves outside ring.
 - Step 4/5
 - Carbon 3 of DHAP, Carbon 3 of GAP
 - Step 6
 - 1,3-BPG Carbon 3
 - Steps 7-10
 - Doesn't really move, can follow down easily
- Slide 5: Pyruvate to Ethanol pictures
 - C3 of pyruvate
 - C2 of acetaldehyde
 - C2 of ethanol
- Slide 6: Cytoplasmic NADH Shuttle Systems
 - Functions to transport cytosolic NADH into mitochondrion
 - Inner mitochondrial membrane lacks a NADH transport protein
 - So NADH cannot cross into mitochondria
 - Why is NADH important? Its electrons can be used to create ATP via the electron -transport process.

Cytoplasmic shuttle systems transport NADH electrons across the inner mitochondrial membrane



- Why is cytosolic NADH important? Its electrons can be used to create ATP via the electron-transport process.

Cytoplasmic shuttle systems transport NADH electrons across the inner mitochondrial membrane

- Glycerophosphate shuttle in insects (in insect wings)
 - 2 ATP per cytoplasmic NADH
- Malate-aspartate shuttle in mammals
 - 3 ATP per cytoplasmic NADH
 - More efficient than glycerophosphate shuttle
 - Involves malate and aspartate

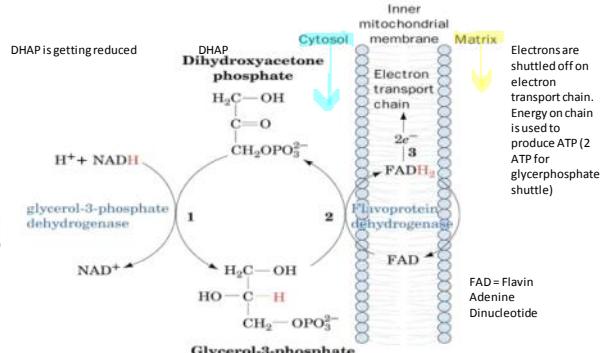
Page 80

5

Cytoplasmic NADH Shuttle Systems

- Function to transport cytosolic NADH into the mitochondrion
- Inner mitochondrial membrane lacks an NADH transport protein
- Why is cytosolic NADH important? Its electrons can be used to create ATP via the electron-transport process.

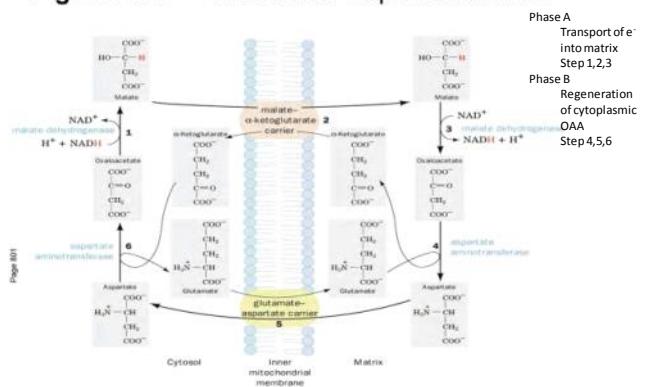
Cytoplasmic shuttle systems transport NADH electrons across the inner mitochondrial membrane



- Glycerophosphate shuttle in insects
 - 2 ATP per cytoplasmic NADH
- Malate-aspartate shuttle in mammals
 - 3 ATP per cytoplasmic NADH

Page 80

7


Figure 22-8 The glycerophosphate shuttle.

Flavoprotein dehydrogenase is reminiscent of Succinate dehydrogenase

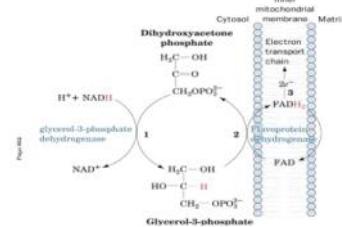
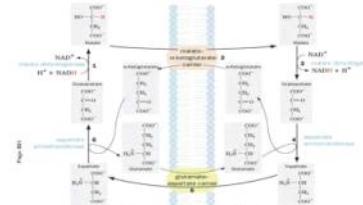

Overall goal: transfer cytosolic NADH to mitochondrial NADH

Figure 22-7 The malate-aspartate shuttle.

- Slide 10: Thermodynamics of electron transport
 - The free energy of electron.... Missed.
- Slide 11: Redox Potentials
 - Redox reactions can be written as two half reactions
 - $\text{Fe}^{3+} + \text{Cu}^{+} \leftrightarrow \text{Fe}^{2+} + \text{Cu}^{2+}$
 - Fe gains electron so it is being reduced
 - C loses electron so it is oxidized
 - $\text{Fe}^{2+} + \text{e} \rightarrow \text{Fe}^{3+}$ (reduction)
 - $\text{Cu}^{+} \rightarrow \text{Cu}^{2+} + \text{e}$ (oxidation)
- Slide 12: Redox Potentials (aka Electromotive force)
 - $\text{Fe}^{3+} + \text{Cu}^{+} \rightarrow \text{Fe}^{2+} + \text{Cu}^{2+}$
 - $\text{Aox}^{2+} + \text{Bred} \leftrightarrow \text{Ared} + \text{Box}^{2+}$
 - Nernst equation: used to calculate free energy of redox reaction


Figure 22-8 The glycerophosphate shuttle.

Page 80

8

Figure 22-7 The malate-aspartate shuttle.

Page 80

9

$$\Delta G = \Delta G^\circ + RT \ln \left(\frac{[A_{\text{red}}][B_{\text{ox}}^{\text{red}}]}{[A_{\text{ox}}^{\text{red}}][B_{\text{red}}]} \right)$$

$$\Delta G = -W_{\text{el}} \quad W_{\text{el}} = \text{electrical work}$$

$$W_{\text{el}} = nF\Delta E \quad F = \text{faraday's constant}$$

$$n = \text{moles}$$

$$\Delta G = -nF\Delta E$$

$$\Delta E = \Delta E^\circ - \frac{RT}{nF} \ln \left(\frac{[A_{\text{red}}][B_{\text{ox}}^{\text{red}}]}{[A_{\text{ox}}^{\text{red}}][B_{\text{red}}]} \right)$$

$^\circ$ refers to
standard conditions

Thermodynamics of Electron Transport

- The free energy of electron transfer from NADH and FADH₂ to O₂ is coupled to ATP synthesis.

10

Slide 13: Reduction Potentials

- $A_{\text{ox}}^{\text{red}} + B_{\text{red}} \leftrightarrow A_{\text{red}} + B_{\text{ox}}^{\text{red}}$
- By convention, both half-reactions are written as reductions
- $A_{\text{ox}}^{\text{red}} + ne^- \leftrightarrow A_{\text{red}}$
- $B_{\text{ox}}^{\text{red}} + ne^- \leftrightarrow B_{\text{red}}$

$$E_A = E_A^\circ - \frac{RT}{nF} \ln \left(\frac{[A_{\text{red}}]}{[A_{\text{ox}}^{\text{red}}]} \right)$$

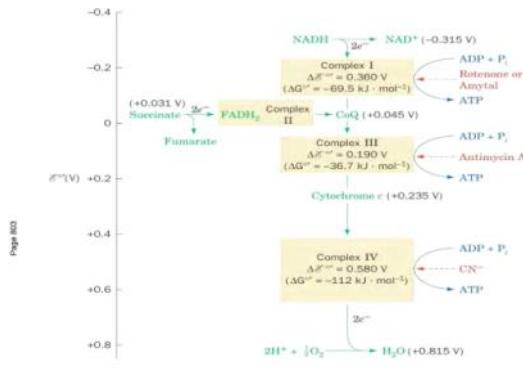
$$\Delta E^\circ = E^\circ_{\text{e- acceptor}} - E^\circ_{\text{e- donor}}$$

Slide 14: Table 16-4B standard reduction potentials of some biochemically important half-reactions

DONE NO MORE TIME DID NOT COVER ADDITIONAL SLIDES

Redox Potentials

- Redox rxns can be written as two half-reactions


$$\text{Fe}^{3+} + \text{Cu}^+ \leftrightarrow \text{Fe}^{2+} + \text{Cu}^{2+}$$

- $\text{Fe}^{3+} + e^- \leftrightarrow \text{Fe}^{2+}$ (reduction)
- $\text{Cu}^+ \leftrightarrow \text{Cu}^{2+} + e^-$ (oxidation)

11

Figure 22-9
The mitochondrial electron-transport chain.

Redox Potentials (a.k.a. Electromotive Force)

- $\text{Fe}^{3+} + \text{Cu}^+ \leftrightarrow \text{Fe}^{2+} + \text{Cu}^{2+}$
- $A_{\text{ox}}^{\text{red}} + B_{\text{red}} \leftrightarrow A_{\text{red}} + B_{\text{ox}}^{\text{red}}$
- Nernst equation:

12

Reduction potentials

- $A_{\text{ox}}^{\text{red}} + B_{\text{red}} \leftrightarrow A_{\text{red}} + B_{\text{ox}}^{\text{red}}$
- By convention, both half-reactions are written as reductions
- $A_{\text{ox}}^{\text{red}} + ne^- \leftrightarrow A_{\text{red}}$
- $B_{\text{ox}}^{\text{red}} + ne^- \leftrightarrow B_{\text{red}}$

13

Table 22-1 Reduction Potentials of Electron-Transport Chain Components in Resting Mitochondria.

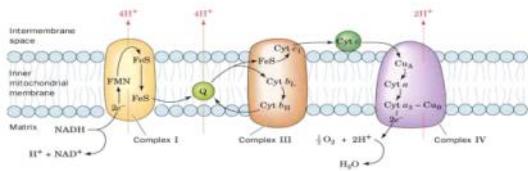
Component	$E^\circ' (\text{V})$
NADH	-0.315

Complex I (NADH:CoQ oxidoreductase; 900 kD, 43 subunits):

FMN	?
(Fe-S)N-1a	-0.380
(Fe-S)N-1b	-0.250
(Fe-S)N-2	-0.030
(Fe-S)N-3,4	-0.245
(Fe-S)N-5,6	-0.270
Succinate	0.031

Source: Mainly Wilson, D.F., Erecinska, M., and Dutton, P.L., *Annu. Rev. Biophys. Bioeng.* 3, 205 and 208 (1974); and Wilson, D.F. In Bittar, E.E. (Ed.), *Membrane Structure and Function*, Vol. 1, p. 160, Wiley (1980).

Page 806


Table 16-4b Standard Reduction Potentials of Some Biochemically Important Half-reactions

Half-Reaction	E° (V)
FAD + 2H ⁺ + 2e ⁻ \rightleftharpoons FADH ₂	-0.040
Oxaloacetate + 2H ⁺ + 2e ⁻ \rightleftharpoons malate ⁺	-0.166
Pyruvate + 2H ⁺ + 2e ⁻ \rightleftharpoons lactate ⁺	-0.185
Acetoin + 2H ⁺ + 2e ⁻ \rightleftharpoons ethanol	-0.197
FAD + 2H ⁺ + 2e ⁻ \rightleftharpoons FADH ₂	-0.219
S + 2H ⁺ + 2e ⁻ \rightleftharpoons H ₂ S	-0.23
Lipic acid + 2H ⁺ + 2e ⁻ \rightleftharpoons aldehydolipic acid	-0.29
NAD ⁺ + 2H ⁺ + 2e ⁻ \rightleftharpoons NADH	-0.315
NADP ⁺ + H ⁺ + 2e ⁻ \rightleftharpoons NADPH	-0.320
Cystine + 2H ⁺ + 2e ⁻ \rightleftharpoons 2 cysteine	-0.340
Acetosuccinate + 2H ⁺ + 2e ⁻ \rightleftharpoons 2-hydroxybutyrate	-0.346
H ⁺ + 2e ⁻ \rightleftharpoons H ₂	-0.41
Acetate ⁺ + 3H ⁺ + 2e ⁻ \rightleftharpoons acetaldehyde + H ₂ O	-0.582

Source: Mostly from Louie, R.A., in Frazee, G.D. (Ed.), *Handbook of Biochemistry and Molecular Biology* (3rd ed.), *Physical and Chemical Data*, Vol. I, pp. 125-130, CRC Press (1976).

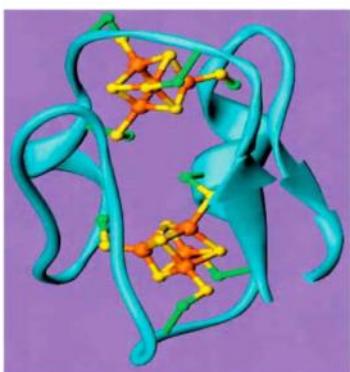

14

Figure 22-14
The mitochondrial electron-transport chain.

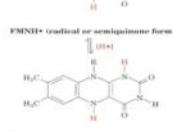
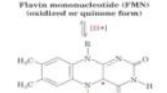
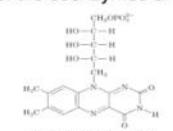
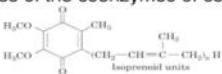
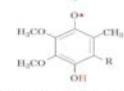



Page 806

Figure 22-16X-Ray structure of ferredoxin from *Peptococcus aerogenes*.

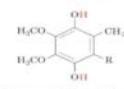
Page 806


Figure 22-17a
Oxidation states of the coenzymes of complex I. (a) FMN.

Page 810


Figure 22-17b

Oxidation states of the coenzymes of complex I. (b) CoQ.


Coenzyme Q (CoQ) or ubiquinone
(oxidized or quinone form)

$\left[\frac{1}{2} \text{H}^{\star} \right]$

Coenzyme QH₂ or ubiquinol
(reduced or hydroquinone form)

$\left[\frac{1}{2} \text{H}^{\star} \right]$

Coenzyme QH[•] or ubisemiquinone
(radical or semiquinone form)