

Electron Transport

Electron Transport

Dec. 4, 2007

Dec. 4, 2007

Overview

- Reduction Potentials
- Phosphorylation and Oxidation
- Electron transport system

Reminder

- All students in section 1D, Tuesday 1-2pm with Midge will have a room change for next week Dec 4th. Please join Rebecca and section 2D in WGYH CS24 at the same time.
- There is plenty of room!!!

Overview

- Reduction Potentials
- Phosphorylation and Oxidation
- Electron Transport System

- Slide 3 Missing: biochemical Half-Reactions Are Physiologically Important
 - If the standard reduction potential is large positive value then the oxidized form is a strong e⁻ acceptor (strong oxidizing agent)
 - Its conjugate reduced form is a weak e⁻ donor (reducing agent)
- Slide 4 Missing Table 16-4A Standard Reduction Potentials of Some Biochemically Important half-reactions
 - Oxygen is best oxidizing agent/electron acceptor (large positive V)
 - NADH is not a good oxidizing agent (better reducing agent)
- Cytochromes
 - Iron is atom that gets reduced

Biochemical Half-Reactions
Are Physiologically Important

- $A_{ox}^{red} + ne^- \leftrightarrow A_{red}$
- If standard reduction potential is large positive value then the oxidized form is a strong e⁻ acceptor (strong oxidizing agent)
- Its conjugate reduced form is a weak e⁻ donor (reducing agent)

Table 16-4b Standard Reduction Potentials of Some Biochemically Important Half-reactions

Half-Reaction	ϑ° (V)
$FAD + 2H^+ + 2e^- \rightleftharpoons FADH_2$ (in flavoproteins)	-0.040
$Oxaloacetate^- + 2H^+ + 2e^- \rightleftharpoons$ malate ⁻	-0.166
$Pyruvate^- + 2H^+ + 2e^- \rightleftharpoons$ lactate ⁻	-0.185

Acetaldehyde + 2H^+ + $2\text{e}^- \rightleftharpoons$ ethanol	-0.197
FAD + 2H^+ + $2\text{e}^- \rightleftharpoons$ FADH ₂ (free coenzyme)	-0.219
$\text{S} + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{S}$	-0.23
Lipoic acid + 2H^+ + $2\text{e}^- \rightleftharpoons$ dihydrolipoic acid	-0.29
$\text{NAD}^+ + \text{H}^+ + 2\text{e}^- \rightleftharpoons \text{NADH}$	-0.315
$\text{NADP}^+ + \text{H}^+ + 2\text{e}^- \rightleftharpoons \text{NADPH}$	-0.320
Cystine + 2H^+ + $2\text{e}^- \rightleftharpoons$ 2 cysteine	-0.340
Acetoacetate + 2H^+ + $2\text{e}^- \rightleftharpoons$ β -hydroxybutyrate	-0.346
$\text{H}^+ + \text{e}^- \rightleftharpoons \text{H}_2$	-0.421
Acetate + 3H^+ + $2\text{e}^- \rightleftharpoons$ acetaldehyde + H_2O	-0.581

Source: Mostly from Leach, P.A., in Fasman, G.D. (Ed.), *Handbook of Biochemistry and Molecular Biology* (3rd ed.), *Physical and Chemical Data*, Vol. 1, pp. 123–130, CRC Press (1976).

Table 16-4a Standard Reduction Potentials of Some Biochemically Important Half-reactions.

Half-Reaction	E° (V)
$\text{H}_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons 2\text{H}_2\text{O}$	-0.17
$\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{O}_2$	0.48
$\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{O}^- + \text{H}_2\text{O}$	0.42
Cytochrome c_1 (Fe ²⁺) + $2\text{e}^- + \text{H}_2\text{O}_2 \rightleftharpoons$ cytochrome c_1 (Fe ³⁺)	0.400
$\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{O}_2$	0.295
Cytochrome c (Fe ²⁺) + $2\text{e}^- + \text{H}_2\text{O}_2 \rightleftharpoons$ cytochrome c (Fe ³⁺)	0.29
Cytochrome c_1 (Fe ²⁺) + $2\text{e}^- + \text{H}_2\text{O}_2 \rightleftharpoons$ cytochrome c_1 (Fe ³⁺)	0.28
Cytochrome c (Fe ²⁺) + $2\text{e}^- + \text{H}_2\text{O}_2 \rightleftharpoons$ cytochrome c (Fe ³⁺) (monooxidized)	0.27
Ubiquinone + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ ubiquinol	0.040
Flavin + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ flavin semiquinone	0.031
FAD + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ FADH ₂ (semiquinone)	-0.048
Oxidative phosphorylation	-0.040
Pyruvate + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ lactate	-0.100
Acetate + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ ethanol	-0.147
FAD + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ FADH ₂ (semiquinone)	-0.198
$\text{X} + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{O}$	-0.219
Reduction of H_2O_2 to H_2O by dihydrolipoic acid	-0.24
$\text{NAD}^+ + \text{H}^+ + 2\text{e}^- \rightleftharpoons \text{NADH}$	-0.313
$\text{NADP}^+ + \text{H}^+ + 2\text{e}^- \rightleftharpoons \text{NADPH}$	-0.350
Cytosolic NADH + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ cytosolic NAD ⁺	-0.360
Acetoin + $2\text{H}^+ + 2\text{e}^- \rightleftharpoons$ acetone	-0.546
$\text{H}^+ + \text{e}^- \rightleftharpoons \text{H}_2$	-0.621
Acetate + $3\text{H}^+ + 2\text{e}^- \rightleftharpoons$ acetonealdehyde + H_2O	-0.701

Biochemical Half-Reactions Are Physiologically Important

- $\text{A}_{\text{ox}}^{\text{n}+} + \text{n}e^- \rightleftharpoons \text{A}_{\text{red}}$
- If standard reduction potential is large then the oxidized form is a strong e^- acceptor (oxidizing agent)
- Its conjugate reduced form is a weak e^- donor (reducing agent)

Thermodynamics of Electron Transport

- NADH oxidation is highly exergonic
- Electron transport is thermodynamically efficient

Thermodynamics of Electron Transport

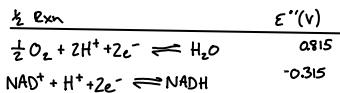
- NADH oxidation is highly exergonic
- Electron transport is thermodynamically efficient

NADH Oxidation Is a Highly Exergonic Rxn

- Half-rxns for O_2 oxidation of NADH

Half-Reaction	E° (V)
$\frac{1}{2}\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{O}$	0.815
$\text{NAD}^+ + \text{H}^+ + 2\text{e}^- \rightleftharpoons \text{NADH}$	-0.315

- Write the overall rxn
- Solve for ΔE°
- Solve for ΔG°


Electron transport system is more energy efficient than cars on the 405

- Electrons pass through protein complexes (not directly to O_2)
- Protein complexes contain redox centers
- Overall NADH (or FADH₂) free energy is broken up amongst protein complexes
- ATP is made via coupled oxidative phosphorylation
- Physiological thermodynamic efficiency = about 70%

NADH Oxidation Is a Highly Exergonic Rxn

- Half-rxns for O_2 oxidation of NADH

1) Write overall rxn

$$\text{NADH} + \text{H}^+ + \text{O}_2 \rightleftharpoons \text{H}_2\text{O} + \text{NAD}^+$$

$$\Delta E^\circ = -1 \text{F} \Delta E^\circ = -1 \times 96,485 \text{ C mol}^{-1} = -96,485 \text{ J mol}^{-1} = -96,485 \text{ kJ mol}^{-1}$$

$$\frac{1}{2}\text{O}_2 + \text{H}^+ + \text{NADH} \rightleftharpoons \text{H}_2\text{O} + \text{NAD}^+ \quad \Delta E^\circ = 0.815 \text{ V} + 0.315 \text{ V} = 1.13 \text{ V}$$

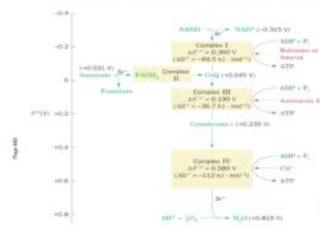
$$\Delta E^\circ = E^\circ(\text{e}^- \text{ acceptor}) - E^\circ(\text{e}^- \text{ donor}) = 0.815 \text{ V} + 0.315 \text{ V} = 1.13 \text{ V}$$

The Sequence of Electron Transport

- Series of 4 protein complexes
- Electrons pass from lower to higher standard reduction potentials

Electron transport system is more energy efficient than cars on the 405

- Electrons pass through protein complexes (not directly to O_2)
- Protein complexes contain redox centers
- Overall NADH free energy is broken up amongst three protein complexes. $FADH_2$ is broken up amongst four
- ATP is made via coupled oxidative phosphorylation
- Physiological thermodynamic efficiency = about 70%
- Automobile engine 30% efficient


need to
 check

The Sequence of Electron Transport

- Series of 4 protein complexes
- Electrons pass from lower to higher standard reduction potentials

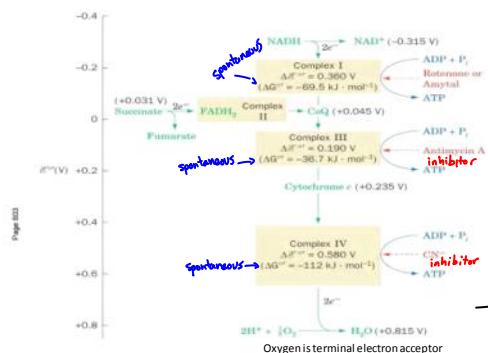
Figure 22-9
The mitochondrial electron-transport chain.

Phosphorylation and Oxidation are Tightly Coupled

- Oxidation of NADH by O_2 yields 3 ATP (3 ADP are phosphorylated)
- Oxidation of $FADH_2$ by O_2 yields 2 ATP (2 ADP are phosphorylated)
- P/O ratio is used to describe stoichiometry
- P/O indicates that oxidation in mitochondria can only occur if ADP is phosphorylated at the same time

11

However, P/O Ratio Values Depend on the Biochemist You Ask

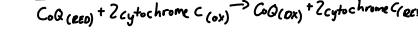

• 3 ATP/NADH x 10 NADH/glucose	• 2.5 ATP/NADH x 10 NADH/glucose
• 2 ATP/ $FADH_2$ x 2 $FADH_2$ /glucose	• 1.5 ATP/ $FADH_2$ x 2 $FADH_2$ /glucose
• 2 ATP/glucose from glycolysis	• 2 ATP/glucose from glycolysis
• 2 ATP/glucose from TCA cycle	• 2 ATP/glucose from TCA cycle

= 38 ATP

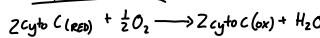
= 32 ATP

12

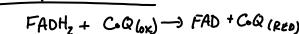
Figure 22-9
The mitochondrial electron-transport chain.



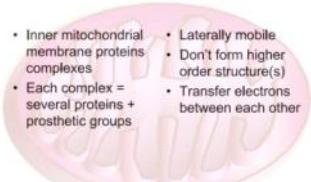
Complex 1 Reaction



Complex 1 does not directly make ATP
Rotenone or Amytal are inhibitors of complex 1


Complex 3 Reaction

Complex 4 Reaction



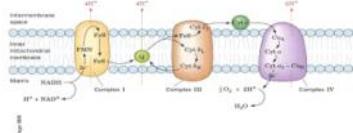
Complex 2 Reaction

Closer Look at the Components of the Electron-Transport Chain

- Inner mitochondrial membrane proteins complexes
- Each complex = several proteins + prosthetic groups
- Laterally mobile
- Don't form higher order structure(s)
- Transfer electrons between each other

13

Phosphorylation and Oxidation are Tightly Coupled


- Oxidation of NADH by O_2 yields 3 ATP (3 ADP are phosphorylated)
- Oxidation of $FADH_2$ by O_2 yields 2 ATP (2 ADP are phosphorylated)
- P/O ratio is used to describe stoichiometry
- P/O indicates that oxidation in mitochondria can only occur if ADP is phosphorylated at the same time

P/O stands for phosphorylation
3/1 ratio for $NADH \rightarrow ATP$

14

Figure 22-14
The mitochondrial electron-transport chain.

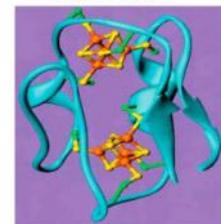
15

The P/O Ratio Values Depend on the Biochemist You Ask

will use these values

- 2.5 ATP/NADH
- 1.5 ATP/ $FADH_2$
- 10 NADH/glucose
- 2 $FADH_2$ /glucose
- 2 ATP/glucose from glycolysis
- 2 ATP/glucose from TCA cycle
- 38 ATP

$$3 \times 10 + 2 \times 2 + 2 + 2 = 38$$


16

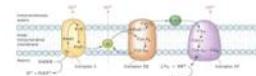
*Alternative slide title: Closer look at components of ETC

Components of the Electron-Transport Chain

- Inner mitochondrial membrane proteins complexes
- Each complex = several proteins + prosthetic groups
 - Laterally mobile
 - Don't form higher order structure(s)
 - Transfer electrons between each other

Figure 22-16 X-Ray structure of ferredoxin from *Peptococcus aerogenes*.

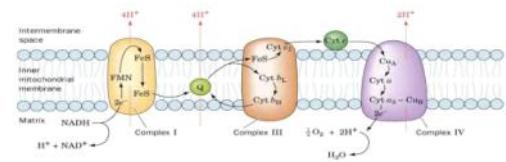
17


Slide 14: Missing Team members of electron transport chain

- Complex I: NADH-Coenzyme Q Reductase
- Complex II: Succinate-Coenzyme Q Reductase
- Complex III: Coenzyme Q-Cytochrome c Reductase
- Cytochrome c
- Complex IV: Cytochrome c Oxidase

- Slide 16: Complex I: Slide Missing

END LECTURE... RAN OUT OF TIME.

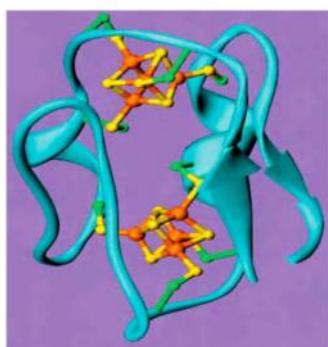

The Coenzymes of Complex I

- FMN and CoQ can accept one or two electrons
- FMN and CoQ bridge the 2-electron donor NADH to cytochromes (one-electron acceptors)

16

Figure 22-14
The mitochondrial electron-transport chain.

Page 203

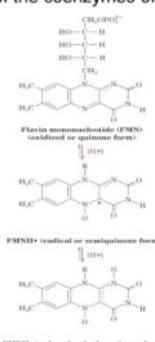

What does each electron-transport chain component look like?

- Complex I (NADH-Coenzyme Q Reductase)
- Complex II (Succinate-Coenzyme Q Reductase)
- Complex III (Coenzyme Q-Cytochrome c Reductase)
- Cytochrome c
- Complex IV (Cytochrome c Oxidase)

Complex I

- Passes electrons from NADH to CoQ
- 850 kD
- Flavin mononucleotide (FMN)
- Iron-sulfur clusters
- Iron-sulfur clusters are redox active

Figure 22-16 X-Ray structure of ferredoxin from *Peptococcus aerogenes*.


Page 819

The Coenzymes of Complex I

- FMN and CoQ can accept one or two electrons
- Why?
- FMN and CoQ bridge the 2-electron donor NADH to cytochromes (one-electron acceptors)

Figure 22-17a

Oxidation states of the coenzymes of complex I. (a) FMN.

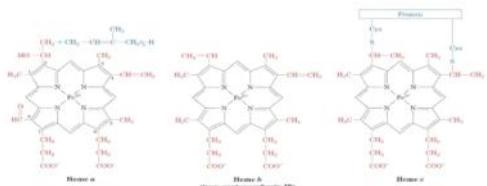
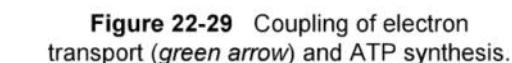

Page 819

Figure 22-17b

Oxidation states of the coenzymes of complex I. (b) CoQ.



Page 819

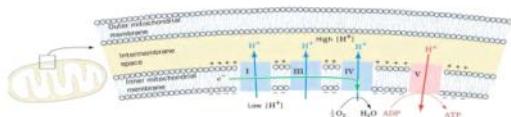
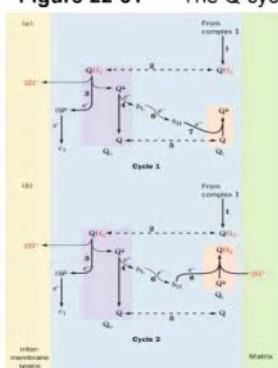
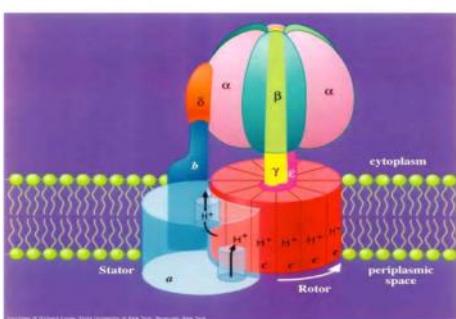


Figure 22-22a Porphyrin rings in cytochromes. (a) Chemical structures.

EIT 2004



172


Figure 22-31 The Q cycle.

922

Figure 22-43 Model of the *E. coli* F_1F_0 -ATPase.

Page 102

