

Oxidative Phosphorylation

Dec. 5, 2007

Oxidative Phosphorylation

Dec. 5, 2007

Announcements

- You may only take the final for the section you are enrolled in
- Friday
 - Last day of lecture
 - Lecture evaluations

Announcements

- You may only take the final for the section you are enrolled in
- Friday
 - Last day of lecture
 - Lecture evaluations

Overview

- FAQ
- Electron transport chain
- Oxidative Phosphorylation
- ATP Synthase

Overview

- FAQ
- Electron transport chain
- Oxidative phosphorylation
- ATP Synthase

OAA can be converted into PEP, so why can't this **[acetylCoA]** be used for gluconeogenesis in vertebrates?

- OAA + GTP \leftrightarrow PEP + CO₂ + GDP

Slide 10 from Nov. 30th lecture

AcetylCoA must go through turn of TCA cycle to become OAA and carbons are lost so it isn't a conversion to PEP.

Glyoxalate pathway can (not in humans though)

OAA can be converted into PEP, so why can't this **[acetylCoA]** be used for gluconeogenesis in vertebrates?

- OAA + GTP \leftrightarrow PEP + CO₂ + GDP

Slide 10 from Nov. 30th lecture

FAD and the TCA Cycle enzymes

- FAD is covalently linked to succinate dehydrogenase
- FAD is NOT covalently linked to succinyl-CoA
- Please revise your Nov. 27th lecture notes (slide 20)

FAD and the TCA Cycle enzymes

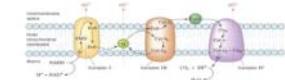
- FAD is covalently linked to succinate dehydrogenase
- FAD is NOT covalently linked to succinyl-CoA
- Please revise your Nov. 27th lecture notes (slide 20)

Electron Transport Chain

- Chain of redox-active cofactors
- Why use a chain?
 - More energetically efficient to pass electrons through bonds rather than physically through space
- Transferring electrons through bonds rather than space is more efficient
- Electron tunneling is a term used to describe this process

Electron Transport Chain

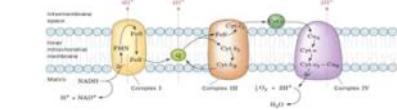
- Chain of redox-active cofactors
- Why use a chain?
- Transferring electrons through bonds rather than space is more efficient
- Electron tunneling is a term used to describe this process


6

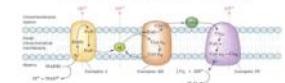
Complex I (NADH-Coenzyme Q Reductase)

*Missing picture of complexes I, III, and IV

- Passes electrons from NADH to CoQ (coenzyme Q)
- 850 kD (largest complex)
- Flavin mononucleotide (FMN) redox-active prosthetic group
- Iron-sulfur clusters
 - Iron is used because it has multiple oxidation states Fe^{2+} and Fe^{3+}
 - 6 to 7 of them
 - Redox active
 - Help in electron-transport


Complex I (NADH-Coenzyme Q Reductase)

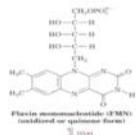
- Passes electrons from NADH to CoQ
- 850 kD (largest complex)
- Flavin mononucleotide (FMN) is a redox-active prosthetic group
- Iron-sulfur clusters
 - 6 to 7 of them
 - Redox-active groups
 - Help in electron-transport


7

The Coenzymes of Complex I are FMN and CoQ

- FMN and CoQ
 - Each have 3 oxidation states
 - Can transfer 1e- or 2e-
 - Each form stable free radicals

The Coenzymes of Complex I are FMN and CoQ



- FMN and CoQ
 - Each have 3 oxidation states
 - Can transfer 1e- or 2e-
 - Each form stable free radicals

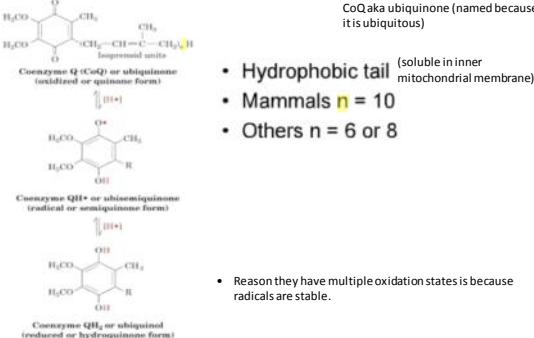
8

Figure 22-17a

Oxidation states of the coenzymes of complex I. (a) FMN.

- Looks a bit like FAD
- Different because FAD has AMP group connected to phosphate group while FMN doesn't have this

Figure 22-17a
Oxidation states of the coenzymes of complex I. (a) FMN.


Page 80

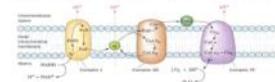
9

Figure 22-17b
Oxidation states of the coenzymes of complex I. (b) CoQ.

Figure 22-17b
Oxidation states of the coenzymes of complex I. (b) CoQ.

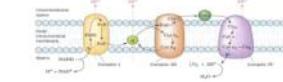
- Hydrophobic tail
- Mammals $n = 10$
- Others $n = 6$ or 8

Complex II (Succinate-Coenzyme Q Reductase)

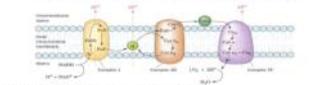

- 127 kD (smallest complex)
- Passes electrons from succinate⁺ to CoQ
- Contains succinate dehydrogenase & other small hydrophobic subunits
- Doesn't involve enough energy for ATP production
- Associated with proton pumping

*Missing picture (complex II not shown in picture though)

Complex II (Succinate-Coenzyme Q Reductase)


- Complex II not shown above
- 127 kD (smallest complex)
- Passes electrons from succinate (FADH_2) to CoQ
- Associated with proton pumping
- Contains succinate dehydrogenase & other small hydrophobic subunits
- Doesn't involve enough energy for ATP production

The Coenzymes of Complex II are FAD and Fe-S clusters


- FAD is covalently bound
- Two Fe-S clusters Function to transfer electrons (because Fe has multiple oxidation states)
- Cytochrome b_{560} is also present

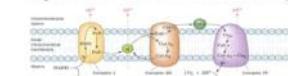
The Coenzymes of Complex II are FAD and Fe-S clusters

- FAD is covalently bound to succinate DH
- Two Fe-S clusters
- Cytochrome b_{560} is also present

Complex III (Coenzyme Q-Cytochrome c Reductase)

- Passes electrons for CoQ to cytochrome c
- Transfer of electrons from Q to Complex III is associated with proton pumping (discuss later if there's time)
 - Redox loop mechanism
 - proton pump mechanism
- Coenzymes
 - b-cytochromes
 - one cytochrome c₁
 - Fe-S clusters

Complex III (coenzyme Q-Cytochrome c Reductase)


- Passes electrons for CoQ to cytochrome c
- Transfer of electrons of Q to Complex III is associated with proton pumping (discuss later if there's time)
 - Redox loop mechanism
 - Thought that there is a method that protons bound to coenzyme Q are the ones that get through mitochondrial membrane and are pumped into inner membrane space
 - Proton pump mechanism
 - Protons go through complex III itself. Somehow complex III changes shape and protons pump through complex III itself
 - Just know that protons are somehow transferred into inner membrane space.
- Coenzymes
 - b-cytochromes
 - One cytochrome c₁
 - Fe-S clusters

What is a cytochrome?

- An electron transport heme protein
- Found in most organisms
- Heme alternates between Fe (II) and Fe (III) during e- transport
- Cytochrome identity can be based on absorption spectrum
- Outer membrane surface protein or transmembrane protein
- Three types: cytochromes a, b, and c

14

Complex III (Coenzyme Q-Cytochrome c Reductase)

- Passes electrons for CoQ to cytochrome c
- Coenzymes
 - b-cytochromes
 - one cytochrome c₁
 - Fe-S clusters

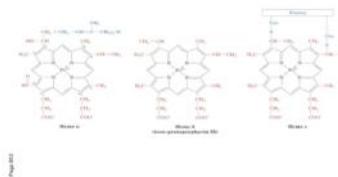


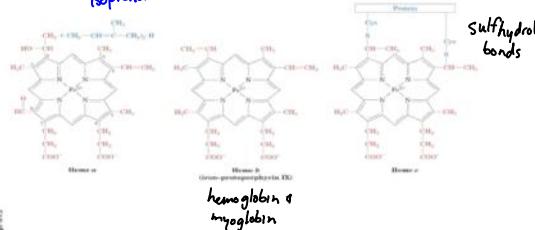
Figure 22-22a Porphyrin rings in cytochromes. (a) Chemical structures.

15

What is a cytochrome?

- An electron transport heme proteins
- Found in most organisms
- Heme alternates between Fe (II) and Fe (III) during e- transport
- Cytochrome identity can be based on absorption spectrum
- Outer membrane surface protein or transmembrane protein
- 3 types: cytochromes a, b, and c

Cytochrome c


- Peripheral membrane protein
- Loosely bound to outer surface of inner mitochondrial membrane
- Shuttle electrons between Cyt c₁ and complex IV

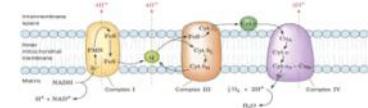
16

Cytochromes a, b, c get their names from the porphyrin rings they have

(3 isoprenoids = farnesol)

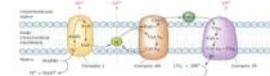
isoprenoid

16/12


Complex IV (Cytochrome c Oxidase)

- A.k.a. COX
- Transfers electrons from Cyt c to O₂
- 4Cytochrome c⁺ + 4H⁺ + O₂ → 4Cytochrome c²⁺ + 2H₂O
- Coenzymes = cyt a, cyt a₃, two Cu ion centers
- 2 protons pumped out per 1/2 O₂; 4 protons pumped out per O₂

17

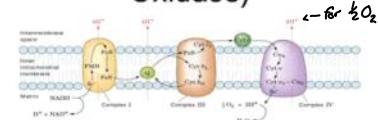

Figure 22-22a Porphyrin rings in cytochromes. (a) Chemical structures.

Cytochrome c

- Peripheral membrane protein
- Shuttle electrons between Cyt c₁ and complex IV
- Loosely bound to outer surface of inner mitochondrial membrane

What happens to the energy of electron transfer?

- The energy is conserved in a proton gradient
- ATP synthesis is then possible by proton flow through specific protein channels


18

Oxidative Phosphorylation

- Endergonic synthesis of ATP from ADP and P_i in mitochondria
- Catalyzed by ATP synthase (Complex V)
- Energy coupling makes this all possible

19

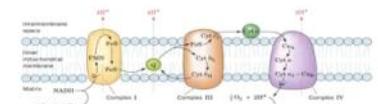
Complex IV (Cytochrome c Oxidase) AKA: COX

- Transfers electrons from Cyt c to O₂
- Coenzymes = cyt a, cyt a₃, ~~2 Cu ions centers~~
- Terminal complex in electron transport chain (O₂ is very good oxidizing agent and is terminal)
- 4Cytochrome c²⁺ + 4H⁺ + O₂ -> 4Cytochrome c³⁺ + 2H₂O
 - O₂ is reduced with 4 electrons
- 2 copper containing subunits (a and b)
- 2 cytochrome units
- 2 protons pumped out per 1/2 O₂; 4 protons pumped out per O₂

What is energy coupling?

- Several hypotheses
 - Conformational coupling hypothesis (Paul Boyer of UCLA)
 - Chemiosmotic hypothesis (Peter Mitchell)

20


Chemiosmotic model was proposed by Peter Mitchell

- Paradigm for the chemical mechanism that couples proton flux with phosphorylation
- Electrochemical energy across mitochondrial membrane derived from
 - a.k.a. proton motive force
 - Chemical gradient (difference in [H⁺])
 - Electrical gradient (separation of charges)
- drives ATP synthesis

21

What happens to the energy of electron transfer?

- The energy is conserved in a proton gradient
- ATP synthesis is then possible by proton flow through specific protein channels
- Chemiosmotic theory helps describe this

Evidence that supports chemiosmotic hypothesis

- Oxidative phosphorylation requires intact inner mitochondrial membrane
- Inner mitochondrial membrane is impermeable to ions
- Measurable electrochemical gradient across the mitochondrial membrane is seen
- Increasing inner mitochondrial membrane permeability inhibits ATP synthesis
- Increasing the acidity of intermembrane space stimulates ATP synthesis

22

Slide 19: Missing: Oxidative Phosphorylation

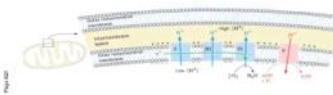
- Endergonic (requires energy) synthesis of ATP from ADP and P_i in mitochondria
- Catalyzed by ATP synthase (Complex V)
- Energy coupling makes this possible

Slide 20 Missing: What is energy Coupling?

- Several hypotheses
 - Conformational coupling hypothesis (Paul Boyer of UCLA)
 - Chemiosmotic hypothesis (Peter Mitchell)

Chemiosmotic model was proposed by Peter Mitchell

- Paradigm for the chemical mechanism that couples proton flux with phosphorylation
- Electrochemical energy across mitochondrial membrane derived from
 - a.k.a. proton motive force
 - Chemical gradient (difference in $[H^+]$)
 - Electrical gradient (separation of charges)
 - drives ATP synthesis

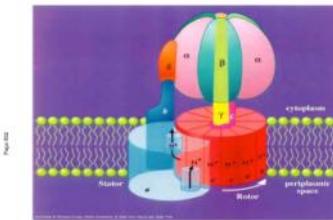

ATP Synthase (Complex V)

- Involved in ATP production
- Inner mitochondrial transmembrane complex
- Multisubunit structure

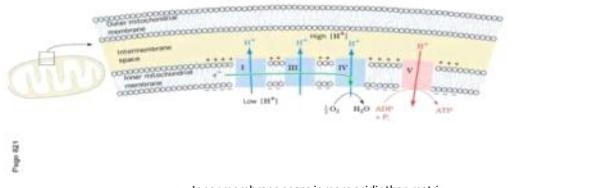
23

- Slide 22 Missing: Evidence that support chemiosmotic hypothesis
 - Oxidative phosphorylation requires intact inner mitochondrial membrane
 - Inner mitochondrial membrane is impermeable to ions
 - Mesurable electrochemical gradient across the mitochondrial membrane is seen
 - Increasing inner mitochondrial membrane permeability inhibits ATP synthesis
 - Increasing the acidity of intermembrane space stimulates ATP synthesis.

Figure 22-29 Coupling of electron transport (green arrow) and ATP synthesis.



24


ATP Synthase (COMPLEX V)

- Involved in ATP production
- Inner mitochondrial complex
- Multisubunit structure

Figure 22-43 Model of the *E. coli* F_1F_0 -ATPase.

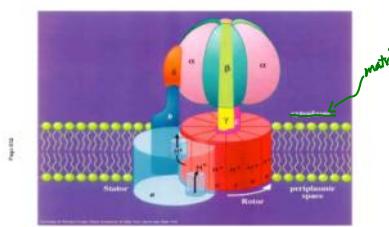


Figure 22-29 Coupling of electron transport (green arrow) and ATP synthesis.

- Inner membrane space is more acidic than matrix
- Electrochemical gradient (more positive charge in inner membrane space than matrix)

Figure 22-43 Model of the *E. coli* F_1F_0 -ATPase, Complex 5

