



## The Grand Finale: ATP Synthase

Dec. 7, 2007

## The Grand Finale: ATP Synthase

Dec. 7, 2007

### Announcements

- Even if you missed this lecture you are held responsible for ALL of this information.
- Final rooms are to be announced on VOH
- Lecture 1: Tues. 3 PM to 6 PM
- Lecture 2: Thurs. 3 PM to 6 PM
- Photo ID is required! We will be checking it.
- No one from Lecture 2 will be permitted into the Tues. final. No one from Lecture 1 will be permitted into the Thurs. final.
- You will be photographed during the final exam.
- No extra time if you are late. Be sure to arrive to campus very early to make sure you are on time. Sleeping in, other exams or appointments, vehicle trouble, late bus/taxi/subway/carpool, traffic, weather, construction, etc. are not permissible excuses.

### Announcements

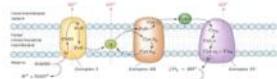
- Even if you missed this lecture you are held responsible for ALL of this information.
- Final rooms are to be announced on VOH
- Lecture 1: Tues. 3 PM to 6 PM
- Lecture 2: Thurs. 3 PM to 6 PM
- Photo ID is required! We will be checking it.
- No one from Lecture 2 will be permitted into the Tues. final. No one from Lecture 1 will be permitted into the Thurs. final.
- You will be photographed during the final exam.
- No extra time if you are late. Be sure to arrive to campus very early to make sure you are on time. Sleeping in, other exams or appointments, vehicle trouble, late bus/taxi/subway/carpool, traffic, weather, construction, etc. are not permissible excuses.

### What to bring

- Photo ID is mandatory. No exceptions.
- Blue or black ink pens
- Nonprogrammable calculator
- Molecular model sets
- Documentation that states any exceptions you may have for the final
  - For example, if you need to eat during the exam or take medication for medical reasons then you must have a doctor's note stating this
  - You are allowed to take the exam early because you have a professional school interview then provide your permission letter from Dr. Villa (you must have prearranged this)

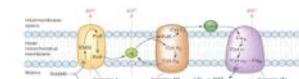
### What to bring

- Photo ID is mandatory. No exceptions.
- Blue or black ink pens
- Nonprogrammable calculator
- Molecular model sets
- Documentation that states any exceptions you may have for the final
  - For example, if you need to eat during the exam or take medication for medical reasons then you must have a doctor's note stating this
  - You are allowed to take the exam early because you have a professional school interview then provide your permission letter from Dr. Villa (you must have prearranged this)


### What is not permitted

- Pencil or anything other than blue or black ink.
- Anything that obscures you during the exam (large hats, large hoods, large coats, sunglasses, etc.)
- Electronic devices (cell phones, PDAs, digital recorders, head phones, scanners, computers, iPod and similar devices, cameras, tape recorders, programmable calculators, etc.)
- Anything like notes, books, booklets, dictionaries, paper, note cards, notebooks, cheat sheets, etc.
- Communicating with others other than proctors and Dr. Villa in any form is not permitted
- Distracting behavior (talking, whistling, humming, eating, tapping, unnecessary sounds, etc.)
- Food (plan to eat beforehand)

### What is not permitted


- Pencil or anything other than blue or black ink.
- Anything that obscures you during the exam (large hats, large hoods, large coats, sunglasses, etc.)
- Electronic devices (cell phones, PDAs, digital recorders, head phones, scanners, computers, iPod and similar devices, cameras, tape recorders, programmable calculators, etc.)
- Anything like notes, books, booklets, dictionaries, paper, note cards, notebooks, cheat sheets, etc.
- Communicating with others other than proctors and Dr. Villa in any form is not permitted
- Distracting behavior (talking, whistling, humming, eating, tapping, unnecessary sounds, etc.)
- Food (plan to eat beforehand)

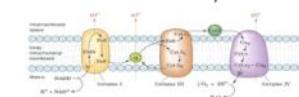
## Sequence of electron carriers



- $\text{NADH} \rightarrow \text{Q} \rightarrow \text{Cyt b} \rightarrow \text{Cyt c}_1 \rightarrow \text{Cyt c} \rightarrow \text{Cyt (a + a}_3\text{)} \rightarrow \text{O}_2$
- Coenzyme q has 3 different oxidation states
- Cytochrome c can only carry 1 electron at a time
- Takes 4 electrons to fully reduce 1 molecule of  $\text{O}_2$  to 1 molecule of water

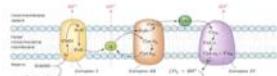
## Sequence of electron carriers




- $\text{NADH} \rightarrow \text{Q} \rightarrow \text{Cyt b} \rightarrow \text{Cyt c}_1 \rightarrow \text{Cyt c} \rightarrow \text{Cyt (a + a}_3\text{)} \rightarrow \text{O}_2$

## Complex I (NADH-Coenzyme Q Reductase)



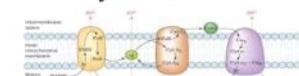

- Hydride ion from NADH is transferred from NADH to FMN
- 2 electrons pass from FMN to FeS centers to Q
- Q diffuses into the lipid bilayer and drives the expulsion of 4 protons (per pair of electrons)
- Q soluble in lipid bilayer

## Complex I (NADH-Coenzyme Q Reductase)



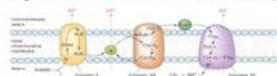
- Hydride ion from NADH is transferred from NADH to FMN
- 2 electrons pass from FMN to FeS centers to Q
- Q diffuses into the lipid bilayer and drives the expulsion of 4 protons (per pair of electrons)

## Complex II (Succinate-Coenzyme Q Reductase)



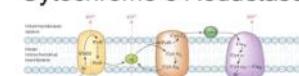

- Electrons from succinate pass thru FAD and several FeS centers to Q

FAD covalently linked to succinate dehydrogenase.


Complex 2 not shown on diagram

## Complex II (Succinate-Coenzyme Q Reductase)




- Electrons from succinate pass thru FAD and several FeS centers to Q

## Complex III (Coenzyme Q-Cytochrome c Reductase)



- Transfer of electrons from ubiquinol ( $\text{QH}_2$ ) to Cyt c
- Coupled to transfer of protons
- How are electrons passed thru the complex?
- Answer: Q cycle

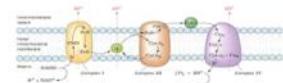
## Complex III (Coenzyme Q-Cytochrome c Reductase)



- Transfer of electrons from ubiquinol ( $\text{QH}_2$ ) to Cyt c
- Coupled to transfer of protons
- How are electrons passed thru the complex?

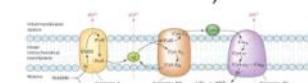
Cytochrome c is peripheral membrane protein (not in lipid bilayer)

## Q cycle


- Accounts for proton translocation during electron transfer from Cyt b to Cyt c
- Ubiquinone carries two electrons
- Cyt  $c_1$  only carries one electron
- Other electron carried by Cyt b back to Q
- Net effect:  $\text{QH}_2$  is oxidized to Q and two molecules of Cyt c are reduced
- Explains how 2 electrons from ubiquinone go onto cytochrome c (only can take 1 electron)

## Q cycle




- Accounts for proton translocation during electron transfer from Cyt b to Cyt c
- Ubiquinone carries two electrons
- Cyt  $c_1$  only carries one electron
- Other electron carried by Cyt b back to Q
- Net effect:  $\text{QH}_2$  is oxidized to Q and two molecules of Cyt c are reduced

## Complex IV (Cytochrome c Oxidase)

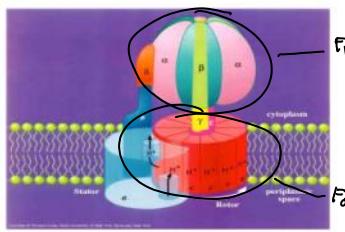


- Cyt c passes one electron to  $\text{Cu}_{\text{A}}$   $\rightarrow$  Cyt a  $\rightarrow$  Cyt  $a_3$   $\rightarrow$   $\text{O}_2$
- One proton pumped per electron
- 1 electron at a time is transferred onto oxygen.
- Cyt c availability regulated transport

## Complex IV (Cytochrome c Oxidase)

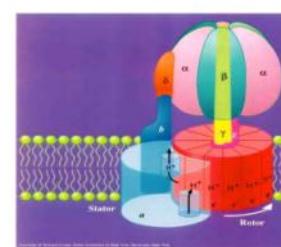


- Cyt c passes one electron to  $\text{Cu}_{\text{A}}$   $\rightarrow$  Cyt a  $\rightarrow$  Cyt  $a_3$   $\rightarrow$   $\text{O}_2$
- One proton pumped per electron
- Cyt c availability regulated transport


## ATP Synthase (complex)

- Large enzyme complex of inner mitochondrial membrane
- Translocates protons
- Two functional domains are  $F_0$  and  $F_1$
- $F_0$ 
  - integral to the membrane means it is inside the membrane
  - Proton pore
  - Can hydrolyze ATP but can't synthesize it
- $F_1$ 
  - peripheral membrane protein
  - "lollipop"
  - Atp synthesized at  $F_1$
  - Alpha-beta dimers site of catalysis (3 of these dimers in  $F_1$  domain)

## ATP Synthase


- Large enzyme complex of inner mitochondrial membrane
- Translocates protons
- Two functional domains are  $F_0$  and  $F_1$
- $F_0$ 
  - integral to the membrane
  - Proton pore
  - Can hydrolyze ATP but can't synthesize it
- $F_1$ 
  - peripheral membrane protein
  - "lollipop"
  - $\alpha\beta$  dimers site of catalysis

**Figure 22-43** Model of the *E. coli*  $F_1F_0$ -ATPase.



Gradient in proton concentration, helps the rotor go around. The rotor pumps the shaft and this shaft causes conformational change in alpha-beta dimers which drives ATP synthase

**Figure 22-43** Model of the *E. coli*  $F_1F_0$ -ATPase.



## Mechanism of ATP synthesis

### Mechanism of ATP synthesis

- Three phases
  - Translocation of protons carried out by  $F_0$
  - Phosphorylation of ADP to ATP by  $F_1$
  - Coupling of dissipation of proton gradient with ATP synthesis (requires  $F_1$  and  $F_0$  interaction)
- ADP and Pi availability regulate oxidative phosphorylation

### Mechanism of ATP synthesis

- Three phases
  - Translocation of protons carried out by  $F_0$
  - Phosphorylation of ADP to ATP by  $F_1$
  - Coupling of dissipation of proton gradient with ATP synthesis (requires  $F_1$  and  $F_0$  interaction)
  - ADP and Pi availability regulate oxidative phosphorylation

#### Animation (youtube) (link on slides)

ATP synthesis happens with high proton concentration in intermembrane space and low proton concentration in matrix. By putting high proton concentration in matrix, then ATP will actually be hydrolyzed and protons will be pumped back into intermembrane space (rotor works in opposite directly)

Copy and paste this link into a web browser for the ATP Synthase video

• <http://www.youtube.com/v/U2latsYnes&rel=1>