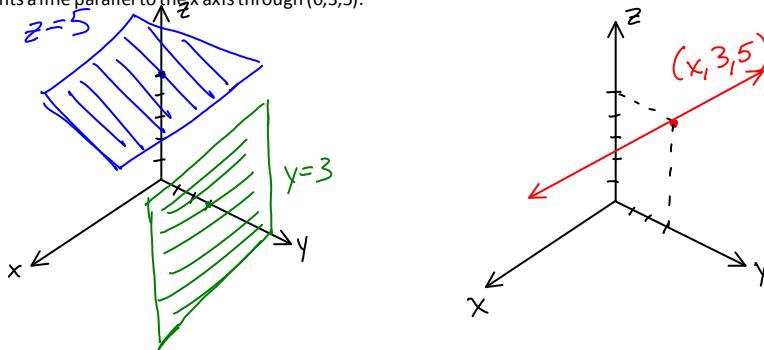

6.

a) What does the equation $x=4$ represent in \mathbb{R}^2 ? What does it represent in \mathbb{R}^3 ? Illustrate with sketches

In \mathbb{R}^2 $x=4$ represents a vertical line crossing through point $(4,0)$



In \mathbb{R}^3 $x=4$ represents a plane with all points $x=4$

b) What does the equation $y=3$ represent in \mathbb{R}^3 ? What does $z=5$ represent? What does the pair of equations $y=3$ $z=5$ represent? In other words, describe the set of points (x,y,z) such that $y=3$ and $z=5$. Illustrate with a sketch.

$y=3$ in \mathbb{R}^3 is a plane where $y=3$ at all points. $z=5$ also represents a plane where $z=5$ at all points. The pair $y=3$ and $z=5$ represents a line parallel to the x-axis through $(0,3,5)$.

8. Find the lengths of the sides of the triangle with vertices $A(1,2,-3)$, $B(3,4,-2)$, and $C(3,-2,1)$. Is ABC a right triangle? Is it an isosceles triangle?

$$D(A \& B) = \sqrt{4+4+1} = 3$$

$$D(A \& C) = \sqrt{(3-1)^2 + (-2-2)^2 + (1+3)^2} = \sqrt{4+16+16} = \sqrt{36} = 6$$

$$D(B \& C) = \sqrt{(3-3)^2 + (-2-4)^2 + (1+2)^2} = \sqrt{0+36+9} = \sqrt{45} = 3\sqrt{5}$$

not isosceles

by pythag:

$$9+36 = 45$$

yes right triangle

14. Find an equation of the sphere that passes through the origin and whose center is $(1,2,3)$.

$$\text{Dist } (0,0,0) \text{ to } (1,2,3) = r$$

$$\sqrt{1+2^2+3^2} = r$$

$$r = \sqrt{1+4+9} = \sqrt{14}$$

$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 14$$

16. Show that the equation represents a sphere, and find its center and radius. $x^2 + y^2 + z^2 = 4x - 2y$

$$x^2 - 4x + y^2 + 2y + z^2 = 0$$

$$x^2 - 4x + (z-1)^2 - (z-1)^2 + y^2 + 2y + (1)^2 - (1)^2 + z^2 = 0$$

$$(x-2)^2 + (y+1)^2 + z^2 = 5$$

center $(2, -1, 0)$
radius $\sqrt{5}$

40. Consider the points P such that the distance from P to A(-1,5,3) is twice the distance from P to B(6,2,-2). Show that the set of all such points is a sphere, and find its center and radius.

let $P = (x, y, z)$ $D = \text{distance}$

$$2 \times D(P \text{ to } B) = D(P \text{ to } A)$$

$$4[(x-6)^2 + (y-2)^2 + (z+2)^2] - [(x+1)^2 + (y-5)^2 + (z-3)^2] = 0$$

$$4[x^2 - 12x + 36 + y^2 - 4y + 4 + z^2 + 4z + 4] - [x^2 + 2x + 1 + y^2 - 10y + 25 + z^2 - 6z + 9] = 0$$

$$4x^2 - 48x + 144 + 4y^2 - 16y + 16 + 4z^2 + 16z + 16 - x^2 - 2x - 1 - y^2 + 10y - 25 - z^2 + 6z - 9 = 0$$

$$3x^2 - 50x + 3y^2 - 6y + 3z^2 + 22z = -141$$

$$x^2 - \frac{50}{3}x + y^2 - 2y + z^2 + \frac{22}{3}z = -\frac{141}{3}$$

$$x^2 - \frac{50}{3}x + \left(\frac{50}{6}\right)^2 - \left(\frac{50}{6}\right)^2 + y^2 - 2y + (1)^2 - (1)^2 + z^2 + \frac{22}{3}z + \left(\frac{22}{6}\right)^2 - \left(\frac{22}{6}\right)^2 = -\frac{141}{3}$$

$$(x - \frac{50}{6})^2 + (y - 1)^2 + (z + \frac{22}{6})^2 = \frac{-141}{3} + \frac{625}{9} + 1 + \frac{121}{9} = \frac{625}{9} + \frac{121}{9} + \frac{9}{9} - \frac{423}{9}$$

$$(x - \frac{50}{6})^2 + (y - 1)^2 + (z + \frac{22}{6})^2 = \frac{332}{9}$$

center: $(\frac{50}{6}, 1, -\frac{22}{6})$

radius: $\frac{\sqrt{332}}{3}$