

HW 15.3 # 3, 7, 14, 27, 35, 42, 50, 57, 70ab, 78, 85

Monday, July 23, 2007
1:27 PM

Heather Graehl
MATH 32A Section 1A

3. The wind-chill index W is the perceived temperature when the actual temperature is T and the wind speed is v , so we can write $W = f(T, v)$. The following table of values is an excerpt from Table 1 in Section 14.1.

		Wind speed (km/h)					
		20	30	40	50	60	70
Actual temperature (°C)	-10	-18	-20	-21	-22	-23	-23
	-15	-24	-26	-27	-29	-30	-30
	-20	-30	-33	-34	-35	-36	-37
	-25	-37	-39	-41	-42	-43	-44

(a) Estimate the values of $f_T(-15, 30)$ and $f_v(-15, 30)$. What are the practical interpretations of these values?
 (b) In general, what can you say about the signs of $\partial W/\partial T$ and $\partial W/\partial v$?
 (c) What appears to be the value of the following limit?

$$\lim_{v \rightarrow \infty} \frac{\partial W}{\partial v}$$

b) $\frac{\partial W}{\partial T}$ is positive

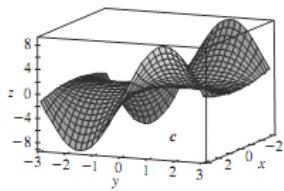
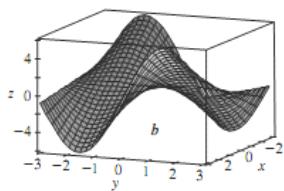
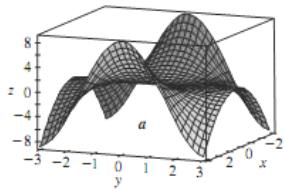
$\frac{\partial W}{\partial v}$ is negative

c) $\lim_{v \rightarrow \infty} \frac{\partial W}{\partial v} = 0$

a) $f_T(-15, 30)$

$$\lim_{h \rightarrow 0} \frac{f(-15+h, 30) - f(-15, 30)}{h} \quad \text{let } h=5$$

$$\lim_{h \rightarrow 0} \frac{f(-10, 30) - f(-15, 30)}{5}$$




$$\lim_{h \rightarrow 0} \frac{-20 + 26}{5} = \frac{6}{5}$$

$$f_v(-15, 30) = \lim_{h \rightarrow 0} \frac{f(-15, 30+h) - f(-15, 30)}{h}$$

$$\lim_{h \rightarrow 0} \frac{f(-15, 35) - f(-15, 30)}{5} = \frac{-26.5 + 26}{5} = \frac{-.5}{5} = \frac{1}{10}$$

For f_T , as the actual temperature decreases, the perceived temperature decreases at a rate of 6/5
 For f_v as the wind speed increases, the perceived temperature decreases at a rate of 1/10.

7. The following surfaces, labeled *a*, *b*, and *c*, are graphs of a function f and its partial derivatives f_T and f_v . Identify each surface and give reasons for your choices.

