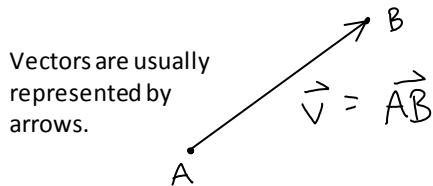


## Notes 13.2

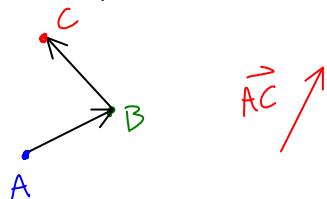

Tuesday, June 26, 2007

1:24 PM

**Vectors** - a vector is something that represents anything with a direction and magnitude (size).

Ex.

- A car traveling northeast at 50mph
- A man pushing a cart east with a force of 5N
- A particle moves from point A to point B.

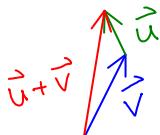



A is called the "initial point" or "tail"  
B is called the "terminal point" or "tip"

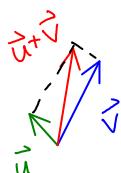
\*Note: It doesn't matter where you draw the vector, as long as it has the same length and direction.

### Combining Vectors

Let's say a particle moves from point A to point B, then from B to C.



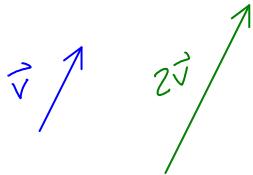

The vector  $\vec{AC}$  is the end result. We define  $\vec{AB} + \vec{BC} = \vec{AC}$


- In general, vectors  $\vec{u}, \vec{v}$

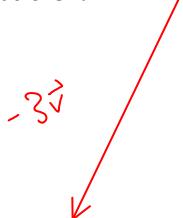


We add them with the "tip-to-tail" method.




Or we can use parallelogram method. Draw  $\vec{u} + \vec{v}$  starting from the tails, going to the intersection.




### How about multiplying?

We can multiply a vector by a **scalar (any real number)**.

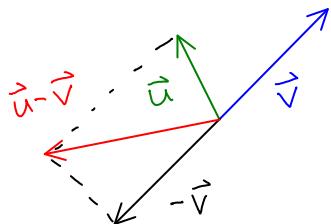
What is  $2\vec{v}$ ?  $2\vec{v}$  has same direction as  $\vec{v}$  but  $2x$  the length.



What is  $-3\vec{v}$ ?



It is  $3x$  as long as  $\vec{v}$ , but in the opposite direction.


- **Definition:** If  $c$  is a real number, and  $\vec{v}$  is a vector, then  $c\vec{v}$  is the vector whose length is  $|c|$  times the length of  $\vec{v}$  and whose direction is:
  - Same as  $\vec{v}$ , if  $c > 0$
  - Opposite, if  $c < 0$ .
  - Zero vector if  $c = 0$  (no length or direction)
- **Definition:** The magnitude of a vector  $\vec{v}$  is its length. It is denoted by  $\|\vec{v}\|$  or  $|\vec{v}|$

\*NOTE: If we multiply a vector by  $-1$ , we set  $(-1)\vec{v} = -\vec{v}$  It has magnitude  $|\vec{v}|$ , but opposite direction.  
If  $\vec{v} = \vec{AB}$ , then  $-\vec{v} = \vec{BA}$

### Subtracting Vectors

Given vectors  $\vec{u}, \vec{v}$ , we define  $\vec{u} - \vec{v}$  to be  $\vec{u} + (-\vec{v})$ .

If  $\vec{u}$  and  $\vec{v}$  have the same initial point,  $\vec{u} - \vec{v}$  is the vector starting at the terminal point of  $\vec{v}$ , ending at the terminal point of  $\vec{u}$ .



### Treating Vectors Algebraically

If we place the initial point of a vector at  $O(0,0,0)$ , then its terminal point will be some  $(a_1, a_2, a_3)$ . We denote this vector by  $\langle a_1, a_2, a_3 \rangle$ .

$a_1, a_2, a_3$  are the components of the vector.

If a vector  $\vec{v}$  starts at some  $(a_1, a_2, a_3)$  and ends at  $(b_1, b_2, b_3)$ , then  $\vec{v} = \langle b_1 - a_1, b_2 - a_2, b_3 - a_3 \rangle$

Ex. What is the magnitude of  $\vec{v}$  where  $\vec{v} = \langle 1, -3, 2 \rangle$

$$|\vec{v}| = \sqrt{1^2 + (-3)^2 + 2^2} = \sqrt{14}$$

In general, if  $\vec{v} = \langle a, b, c \rangle$ , then  $|\vec{v}| = \sqrt{a^2 + b^2 + c^2}$

## How to Add Vectors Algebraically

$$\vec{v} = \langle a_1, a_2, a_3 \rangle$$

$$\vec{b} = \langle b_1, b_2, b_3 \rangle$$

c = scalar real number

$$\vec{v} + \vec{w} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

$$\vec{v} - \vec{w} = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$$

$$c\vec{v} = \langle ca_1, ca_2, ca_3 \rangle$$

In  $\mathbb{R}^3$ , we have three important vectors:

1.  $\vec{i} = \langle 1, 0, 0 \rangle$

2.  $\vec{j} = \langle 0, 1, 0 \rangle$

3.  $\vec{k} = \langle 0, 0, 1 \rangle$

Why are these vectors important?

any vector  $\vec{a} = \langle a_1, a_2, a_3 \rangle$  then  $\vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k}$

Ex.  $\vec{a} = 2\vec{i} + 3\vec{j} - 5\vec{k}$

$$\vec{b} = 4\vec{j} - 7\vec{k}$$

Find  $\vec{a} + \vec{b}$

$$= 2\vec{i} + 3\vec{j} - 5\vec{k} + 4\vec{j} - 7\vec{k}$$

$$= 2\vec{i} + 7\vec{j} - 12\vec{k}$$

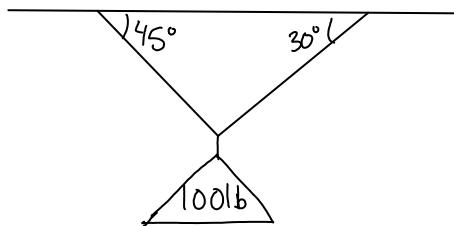
**Definition:** A unit vector is a vector of length 1.

Ex.

i)  $\vec{i}, \vec{j}, \vec{k}$  are unit vectors

ii) Let  $\vec{v}$  be any non-zero vector. Then  $\frac{1}{|\vec{v}|}\vec{v}$  is a unit vector. It's called the unit vector in the direction of  $\vec{v}$ .

iii) Find unit vectors in the direction of  $2\vec{i} - \vec{j} - 2\vec{k}$


$$|\vec{v}| = \sqrt{4 + 1 + 4} = 3$$

$$\frac{2}{3}\vec{i} - \frac{1}{3}\vec{j} - \frac{2}{3}\vec{k}$$

Ex.

**Forces:** forces are represented by vectors.

A 100lb weight hangs from 2 wires:

