

## Notes 13.3

Wednesday, June 27, 2007  
1:29 PM

### Dot Product

The dot product (scalar product) of  $\vec{v} = \langle a_1, a_2, a_3 \rangle$  and  $\vec{w} = \langle b_1, b_2, b_3 \rangle$  is defined as  $\vec{v} \cdot \vec{w} = a_1b_1 + a_2b_2 + a_3b_3$ .

Note: The dot product results in a scalar.

In  $\mathbb{R}^2$   $\langle a, b \rangle \cdot \langle c, d \rangle = ac + bd$

Example 1:

$$\begin{aligned} \langle 2, 4 \rangle \cdot \langle 3, -1 \rangle &= (2)(3) + (4)(-1) \\ &= 6 - 4 = 2 \end{aligned}$$

Example 2:

$$(i + 2j - 3k) \cdot (4i - 5k) = 4 + 0 + 15 = 19$$

### Properties of Dot Product

1.  $\vec{a} \cdot \vec{a} = |\vec{a}|^2$

Proof  $\vec{a} = \langle a_1, a_2, a_3 \rangle$   
 $\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2$   
 $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

2. Distributive

$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

3. Commutative

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

4.  $\vec{0} \cdot \vec{a} = 0$

5.  $c(\vec{a} \cdot \vec{b}) = (c\vec{a}) \cdot \vec{b} = \vec{a} \cdot (c\vec{b})$

### Theorem

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

Where  $\theta$  is the angle between the vectors  $\vec{a}$  and  $\vec{b}$

Example: If  $|\vec{a}| = 4$ ,  $|\vec{b}| = 6$  & angle between them is  $\frac{\pi}{3}$ , find  $\vec{a} \cdot \vec{b}$ .

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

$$= 4 \cdot 6 \cos \frac{\pi}{3} = 12$$

\*Need to know trig functions of  $0, \frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{6}, \frac{\pi}{4}$

### Corollary

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Example: Find the angle between  $\vec{a} \langle 2, 2, -1 \rangle$  and  $\vec{b} \langle 5, -3, 2 \rangle$

$$\vec{a} \cdot \vec{b} = 10 - 6 - 2 = 2$$

$$|\vec{a}| = 3 \quad |\vec{b}| = \sqrt{25 + 9 + 4} = \sqrt{38}$$

$$\cos \theta = \frac{2}{3\sqrt{38}}$$

$$\theta = 83.79$$

### Corollary

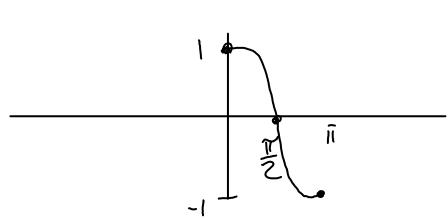
$\vec{a}$  and  $\vec{b}$  are orthogonal (perpendicular) if and only if their dot product is 0.

$$\vec{a} \perp \vec{b} \iff \theta = \frac{\pi}{2}$$

$$\cos \theta = 0$$

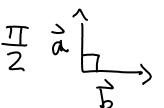
\*NOTE  $\vec{0}$  is defined to be orthogonal to everything.

Lets consider  $y = \cos \theta$



$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

For  $0 < \theta < \frac{\pi}{2}$  acute  $\angle$   
then  $\vec{a} \cdot \vec{b} > 0$

For  $\theta > \frac{\pi}{2}$   right  $\angle$

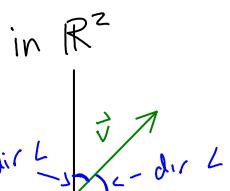
$$\text{then } \vec{a} \cdot \vec{b} = 0$$

For  $\frac{\pi}{2} < \theta < \pi$   obtuse  $\angle$   
then  $\vec{a} \cdot \vec{b} < 0$

Example: Show that  $\vec{v} = 2i + 2j - k$  and  $\vec{w} = 5i - 4j + 2k$  are orthogonal.

$$\vec{v} \cdot \vec{w} = 10 - 8 - 2 = 0 \quad \text{so it is orthogonal}$$

### Direction Angles



The direction angles  $\alpha, \beta, \gamma$  of vector  $\vec{v}$  are the angles  $\vec{v}$  makes with the positive x, y, and z axis (ie the angle between  $\vec{v}$  and  $i, j, k$ )

### Direction cosines

$$v = \langle a_1, a_2, a_3 \rangle$$

$$\cos(\alpha) = \frac{\vec{v} \cdot i}{|\vec{v}| |i|} = \frac{a_1}{|\vec{v}|}$$

$$\cos(\beta) = \frac{a_2}{|\vec{v}|}$$

$$\cos(\gamma) = \frac{a_3}{|\vec{v}|}$$

Something we can do with direction cosines:

$$\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = \frac{a_1^2}{|\vec{v}|^2} + \frac{a_2^2}{|\vec{v}|^2} + \frac{a_3^2}{|\vec{v}|^2} = \frac{1}{|\vec{v}|^2} (a_1^2 + a_2^2 + a_3^2) = \frac{1}{|\vec{v}|^2} \vec{v} \cdot \vec{v} = 1$$

$$\vec{v} = \langle a_1, a_2, a_3 \rangle = \langle |\vec{v}| \cos \alpha, |\vec{v}| \cos \beta, |\vec{v}| \cos \gamma \rangle$$

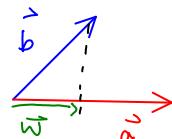
$$= |\vec{v}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

$$= \frac{\vec{v}}{|\vec{v}|} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

unit vector

### Projections

The projection of  $\vec{b}$  onto  $\vec{a}$  is  $\text{proj}_{\vec{a}} \vec{b} = \vec{w}$



$$\star |\vec{w}| = |\vec{b}| \cos \theta$$

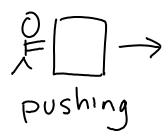
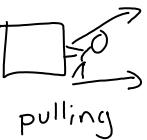
$$|\vec{w}| = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} = \text{comp}_{\vec{a}} \vec{b}$$

Need to multiply by unit vector in direction of  $\vec{a}$

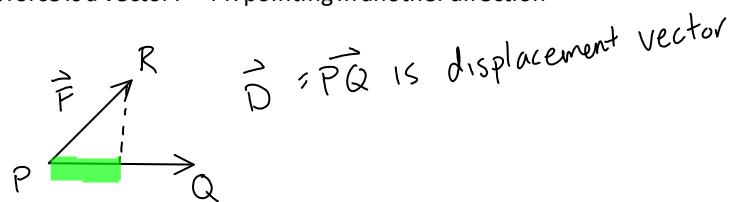
$$\text{proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$

### Work

In physics it is  $Fd$  (force x distance)



Suppose a constant force is a vector  $\vec{F} = \vec{PR}$  pointing in another direction



The force in the direction of  $\vec{D}$  is  $|\vec{F}| \cos \theta$

$$W = |\vec{F}| \cos \theta / |\vec{D}| = \vec{F} \cdot \vec{D}$$