

Notes: 13.6 Cylinders and Quadric Surfaces

Tuesday, July 17, 2007
1:25 PM

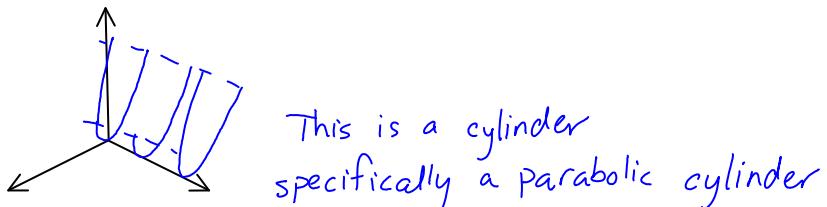
Graphing surfaces: quadric surfaces

To sketch a graph of a surface, we look at traces; i.e. the intersections of the surface with a plane $x=k, y=k, z=k$.

Cylinders: a cylinder is a surface that consists of all lines parallel to a given line and that pass through a given plane curve.

Example: $z=x^2$

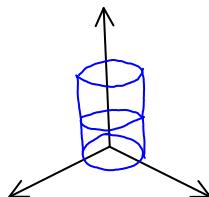
What are the traces?
look at $y=k$



NOTE: if you are missing a variable you have a cylinder.

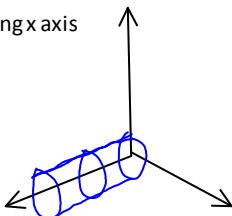
Example: $x^2+y^2=1$

intersect with $z=k$ get a circle



Example: $y^2+z^2=1$

does not depend on x so stretches along x axis



Quadric Surfaces:

Surfaces for which the equations has all terms of degree at most 2.

e.g.

$$3x^2 + 4z^2 + 5yz - 2 = 0 \quad \text{quadric}$$

$$3x^2 + 4z^2 + (5yz)^2 - 2 = 0 \quad \text{not quadric surface}$$

degree 3

These can be reduced to one of 2 standard forms:

$$Ax^2 + By^2 + Cz^2 + D = 0$$

or

$$Ax^2 + By^2 + Cz = 0$$

Example: Use traces to sketch $\frac{x^2}{9} + \frac{y^2}{9} + \frac{z^2}{4} = 1$

Substitute $x=k$

$$\frac{k^2}{9} + \frac{y^2}{9} + \frac{z^2}{4} = 1$$

$$\frac{y^2}{9} + \frac{z^2}{4} = 1 - k^2 \quad \text{ellipse}$$

Substitute $x=k$

$$\frac{k^2}{9} + \frac{y^2}{4} + \frac{z^2}{4} = 1$$

$$\frac{y^2}{9} + \frac{z^2}{4} = 1 - k^2 \quad \text{ellipse}$$

$$1 - k^2 \geq 0$$

$$k^2 \leq 1$$

$$-1 \leq k \leq 1$$

So $x=2$ has no intersection

This surface is contained between the planes $x=-1$ and $x=1$

Substitute $y=k$

$$\frac{x^2}{9} + \frac{k^2}{9} + \frac{z^2}{4} = 1$$

$$\frac{x^2}{9} + \frac{z^2}{4} = 1 - \frac{k^2}{9} \quad \text{ellipse}$$

$$1 - \frac{k^2}{9} \geq 0$$

$$k^2 \leq 9$$

$$-3 \leq k \leq 3$$

This surface is contained between planes $y=-3$ and $y=3$

Substitute $z=k$

$$\frac{x^2}{9} + \frac{y^2}{4} + \frac{k^2}{4} = 1$$

$$\frac{x^2}{9} + \frac{y^2}{4} = 1 - \frac{k^2}{4} \quad \text{ellipse}$$

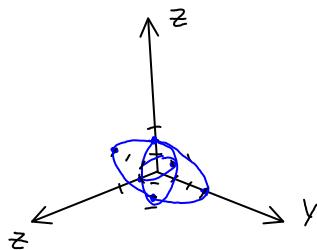
$$1 - \frac{k^2}{4} \geq 0$$

$$k^2 \leq 4$$

$$-2 \leq k \leq 2$$

This surface is contained between planes of $z=-2$ and $z=2$.

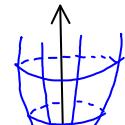
Now let's try to sketch:



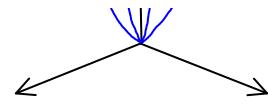
Example: sketch $z = 4x^2 + y^2$

$\bullet x=k \quad z = 4k^2 + y^2 \quad \leftarrow \text{parabola}$

$\curvearrowleft \curvearrowright \curvearrowleft \curvearrowright$

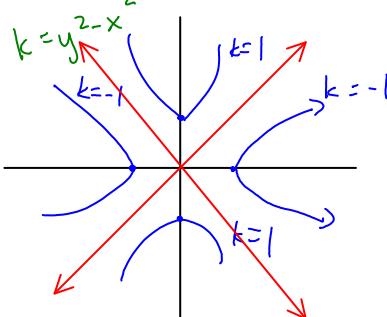


- $y = k$ $z = 4x^2 + k^2$ \leftarrow parabola
thinner parabola
- $z = k$ $k = 4x^2 + y^2$ \leftarrow ellipse
 $k \geq 0$



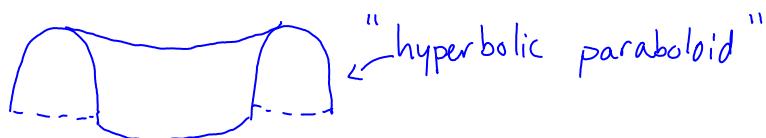
Example: sketch $z = y^2 - x^2$

- $x = k$ $z = y^2 - k^2$ \leftarrow parabola
- $y = k$ $z = k^2 - x^2$ \leftarrow parabola
- $z = k$ $k = y^2 - x^2$ \leftarrow hyperbola



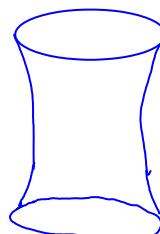
- $k = 0$ $0 = y^2 - x^2$
 $0 = (y-x)(y+x)$
either $y = x$ or $y = -x$

This is a saddle:



Example: Sketch $\frac{x^2}{4} + y^2 - \frac{z^2}{4} = 1$

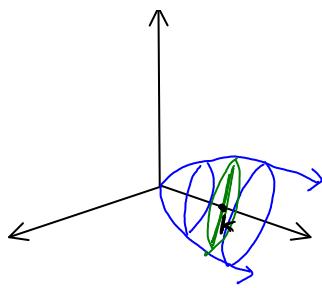
- $x = k$ hyperbola $-2 \leq x \leq 2$
- $y = k$ hyperbola $-1 \leq y \leq 1$
- $z = k$ ellipse



"Hyperboloid of one sheet"

Book has table on p872

Example: Find an equation for the surface given by rotating the parabola $y = x^2$ around the y-axis.



- $y = k$ circle
center = $(0, k, 0)$
in $x, z = (0, 0)$
radius: \sqrt{k}
eq of circle: $x^2 + z^2 = k$
- $y = x^2 + z^2$