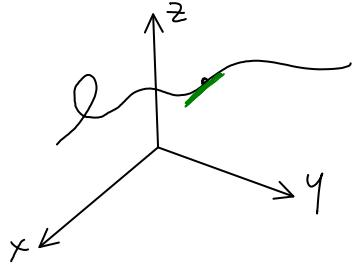


Notes 14.2: Derivatives and Integrals of Vector Functions

Monday, July 09, 2007
1:22 PM

Derivatives and Integrals of Vector Functions

$r(t)$ vector function



$r'(t)$ gives a vector tangent to the space curve defined by $r(t)$. The length of $r'(t)$ is the speed at which the particle moves.

How to take a derivative of a vector function?

$$r(t) = \langle f(t), g(t), h(t) \rangle$$
$$r'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

Example 1: Find $r'(t)$ for $r(t) = \langle 1+t^3, te^{-t}, \sin(2t) \rangle$

$$r'(t) = \langle 3t^2, -te^{-t}, 2\cos(2t) \rangle$$

Unit tangent vector: vector in the direction of $r'(t)$ with length 1. $T(t) = \frac{\vec{r}'(t)}{\|r'(t)\|}$

Example 2: $r(t) = \langle 1+t^3, te^{-t}, \sin(2t) \rangle$ Find the unit tangent vector at the point where $t=0$.

$$r'(0) = \langle 0, 1, 2 \rangle$$
$$\|r'(0)\| = \sqrt{5}$$

unit tangent vector $\langle 0, \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$

Tangent line at a point: line through $r(t_0)$ in the direction of $r'(t_0)$ or $T(t_0)$

Example 3: Find the tangent line through the point where $t=0$ as in examples 1 and 2.

$$r(t) = \langle 1+t^3, te^{-t}, \sin(2t) \rangle$$

$$\text{Point: } r(0) = \langle 1, 0, 0 \rangle$$

Vector equation of tangent line:

$$L(t) = \langle 1, 0, 0 \rangle + t \langle 0, 1, 2 \rangle$$

Parametric equations:

$$x=1$$

$$y=t$$

$$z=2t$$

Example 4: Let $r(t) = \sqrt{t} \mathbf{i} + (2-t) \mathbf{j}$

- Find $r'(t)$
- Sketch $r(1)$ and $r'(1)$

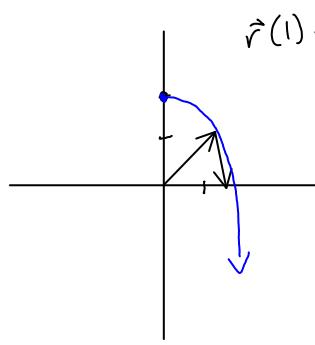
Find $r'(t)$:

$$\vec{r}(t) = \langle t^{\frac{1}{2}}, 2-t \rangle$$

$$\vec{r}'(t) = \langle \frac{1}{2\sqrt{t}}, -1 \rangle$$

Sketch:

sketch:



$$\vec{r}(1) = \langle 1, 1 \rangle \quad \vec{r}'(1) = \langle \frac{1}{2}, -1 \rangle$$

Can we sketch $r(t)$?

$$x = \sqrt{t}, \quad y = 2 - t$$

$$t = x^2, \quad y = 2 - x^2$$

Example 5: Find parametric equations for the tangent line to the helix.

Helix: $x = 2\cos(t)$, $y = \sin(t)$, $z = t$ at $(0, 1, \pi/2)$

$$\sin^2 t + \cos^2 t = 1$$

$$\frac{x}{2} = \cos t$$

$$y^2 + \frac{x^2}{4} = 1 \quad \text{Ellipse}$$

$$\text{Vector equation: } \vec{r}(t) = \langle 2\cos t, \sin t, t \rangle$$

$$\vec{r}'(t) = \langle -2\sin t, \cos t, 1 \rangle$$

What value of t gives $(0, 1, \pi/2)$

$$t = \pi/2$$

$$\vec{r}'\left(\frac{\pi}{2}\right) = \langle -2, 0, 1 \rangle$$

So, equations are:

$$x = -2t$$

$$y = 1$$

$$z = \pi/2 + t$$

Second Derivative: $r(t)$ as $r''(t)$

Definition: A curve given by a vector function $r(t)$ on an interval I is called smooth if

- $r(t)$ is continuous
- $r'(t) \neq \vec{0}$ (is never 0 on I)

Example 6: Is the helix from example 5 smooth when $I = \mathbb{R}$

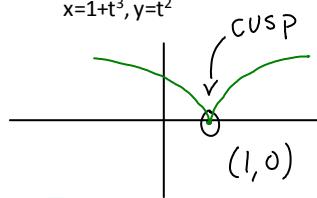
- It is continuous
- Yes, never 0
So it is smooth

Example 7: Determine if $r(t) = \langle 1+t^3, t^2 \rangle$ is smooth.

- Yes, continuous
- $r'(t) = \langle 3t^2, 2t \rangle$
Not smooth, when $t=0$ then $r'(t) = \langle 0, 0 \rangle$

$$r(0) = \langle 1, 0 \rangle$$

$$x = 1+t^3, \quad y = t^2$$



Differentiation Rules:

u, v = vector functions

c = scalar

f = real-valued function

$$1) \frac{d}{dt} \left[\vec{u}(t) + \vec{v}(t) \right] = \frac{d}{dt} \vec{u}(t) + \frac{d}{dt} \vec{v}(t)$$

$$2) \frac{d}{dt} \left[c \vec{u}(t) \right] = c \frac{d}{dt} \vec{u}(t)$$

$$3) \frac{d}{dt} \left[f(t) \vec{u}(t) \right] = f(t) \vec{u}'(t) + f'(t) \vec{u}(t)$$

$$4) \frac{d}{dt} \left[\vec{u}(t) \cdot \vec{v}(t) \right] = \vec{u}(t) \cdot \vec{v}'(t) + \vec{u}'(t) \cdot \vec{v}(t)$$

$$5) \frac{d}{dt} \left[\vec{u}(t) \times \vec{v}(t) \right] = \vec{u}(t) \times \vec{v}'(t) + \vec{u}'(t) \times \vec{v}(t) \quad \text{*order important}$$

$$6) \frac{d}{dt} \left[\vec{u}(f(t)) \right] = f'(t) \vec{u}'(f(t)) \quad \text{*chain rule}$$

Integration of Vector Functions:

$\int \vec{r}(t) dt$ is defined by integrating components.

Example 8: $\vec{r}(t) = 2 \cos t \mathbf{i} + \sin t \mathbf{j} + 2t \mathbf{k}$

Find $\int_0^{\frac{\pi}{2}} \vec{r}(t) dt$

$$\int \vec{r}(t) dt = 2 \sin t \mathbf{i} - \cos t \mathbf{j} + t^2 \mathbf{k} \Big|_0^{\frac{\pi}{2}}$$

$$= \left(2\mathbf{i} + 0\mathbf{j} + \frac{\pi^2}{4} \mathbf{k} \right) - (0\mathbf{i} + \mathbf{j} + 0\mathbf{k})$$

$$= 2\mathbf{i} - \mathbf{j} + \frac{\pi^2}{4} \mathbf{k} \quad (\text{vector})$$

Example 9: Show that if $|\vec{r}(t)| = C$ then $r'(t)$ is orthogonal to $r(t)$ for all t .

*NOTE: $\vec{r}(t) \cdot \vec{r}(t) = |\vec{r}(t)|^2 = C^2$

$$\frac{d}{dt} \left[\vec{r}(t) \cdot \vec{r}(t) \right] = \frac{d}{dt} (C^2) = 0$$

$$\vec{r}(t) \cdot \vec{r}'(t) + \vec{r}'(t) \cdot \vec{r}(t)$$

$$2\vec{r}(t) \cdot \vec{r}'(t) = 0$$

$$\vec{r}(t) \cdot \vec{r}'(t) = 0$$

so they are orthogonal for all t .