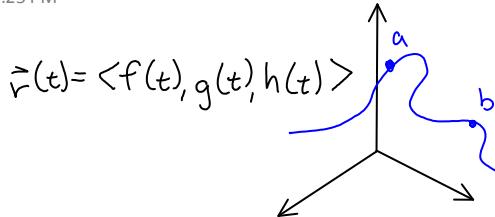


Notes 14.3: Arc Length and Curvature

Tuesday, July 10, 2007
1:25 PM



Distance along the curve from a to b is arc length

Arc Length Formula: The arc length of $r(t)$ from $t=a$ to $t=b$ is given by:

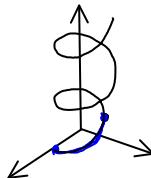
$$L = \int_a^b \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} dt$$

*Note: $\sqrt{f'^2 + g'^2 + h'^2} = |r'(t)|$

so $L = \int_a^b |r'(t)| dt$

*Note: these are hard

Example: Find the arc length along the helix $r(t) = <\cos(t), \sin(t), t>$ from the point $(1,0,0)$ to $(0,1,\pi/2)$



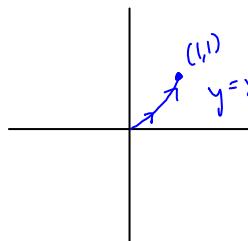
$$\begin{aligned} f'(t) &= -\sin t \\ (f'(t))^2 &= \sin^2 t \\ g'(t) &= \cos t \\ (g'(t))^2 &= \cos^2 t \\ h'(t) &= 1 = (h'(t))^2 \end{aligned}$$

$$|r'(t)| = \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2}$$

$$L = \int_a^b \sqrt{2} dt \quad a=0 \quad b=\frac{\pi}{2}$$

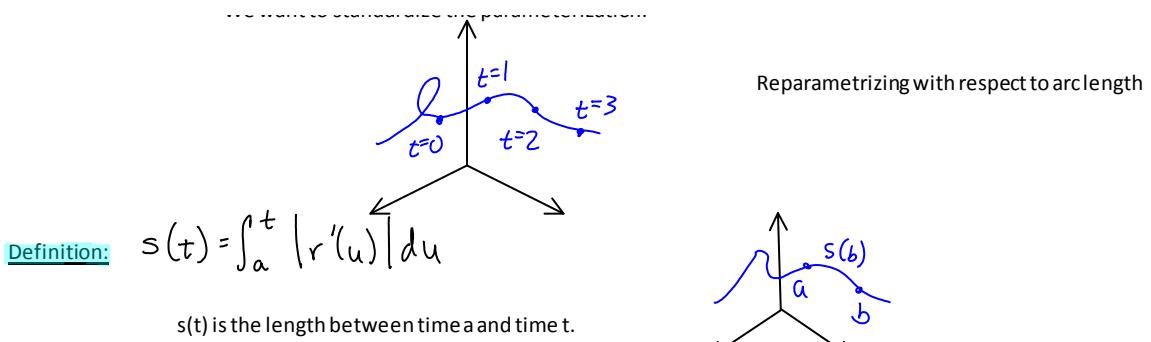
$$L = \int_0^{\pi/2} \sqrt{2} dt = \sqrt{2} t \Big|_0^{\pi/2} = \frac{\pi \sqrt{2}}{2} = \boxed{\frac{\pi}{\sqrt{2}}}$$

*Note: a curve can be parameterized in more than one way.



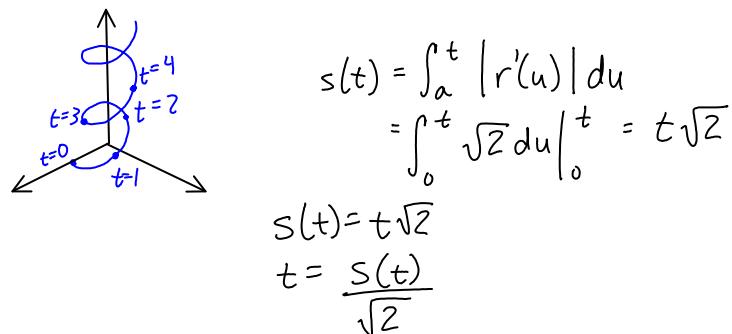
$$\begin{aligned} \vec{r}_1(t) &= \langle t, t^2 \rangle \\ 0 \leq t \leq 1 \\ \vec{r}_2(t) &= \langle \sin t, \sin^2 t \rangle \\ 0 \leq t \leq \frac{\pi}{2} \\ \vec{r}_3(t) &= \langle t^3, t^6 \rangle \\ 0 \leq t \leq 1 \end{aligned}$$

We want to standardize the parameterization.

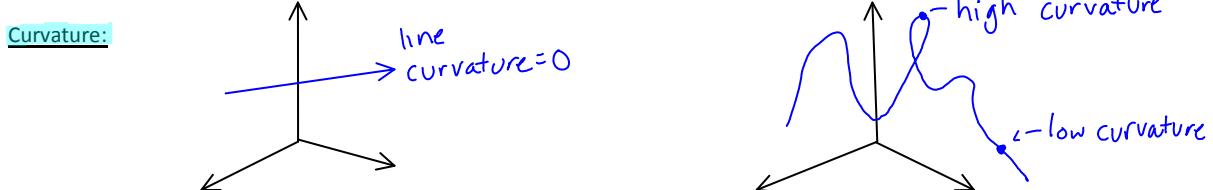


Sometimes we can solve for t in terms of s in that formula. When we do that, we reparametrize $r(t)$ as $r(t(s))$

Example: $r(t) = \langle \cos(t), \sin(t), t \rangle$ Reparametrize with respect to arclength in the increasing direction of t from $(1, 0, 0)$.



New parametrization:
 $\vec{r}(s) = \langle \cos(s/\sqrt{2}), \sin(s/\sqrt{2}), s/\sqrt{2} \rangle$



We look at $\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|}$
 curvature measures change in $T(t)$

Definition: $K = \left| \frac{dT}{ds} \right|$ after reparametrizing

Way around this:

By chain rule, $\frac{dT}{dt} = \frac{dT}{ds} \frac{ds}{dt}$

$$K = \left| \frac{dT}{ds} \right| = \left| \frac{\frac{dT}{dt}}{\frac{ds}{dt}} \right|$$

$$= \left| \frac{1}{\int_a^b |r'(u)| du} \right|$$

$$s(t) = \int_a^b |r'(u)| du$$

$$\frac{ds(t)}{dt} = |r'(t)|$$

$$\text{so, } K = \frac{|T'(t)|}{|r'(t)|}$$

Example: Find the curvature of a circle with radius a

$$\vec{r}(\theta) = \langle a\cos\theta, a\sin\theta \rangle$$

$$T(\theta) = \frac{\vec{r}'(\theta)}{|\vec{r}'(\theta)|}$$

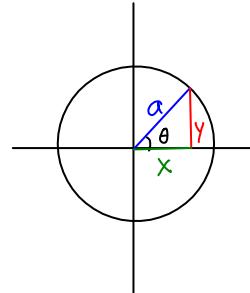
$$\vec{r}'(\theta) = \langle -a\sin\theta, a\cos\theta \rangle$$

$$|\vec{r}'(\theta)| = \sqrt{a^2\sin^2\theta + a^2\cos^2\theta} = \sqrt{a^2(\sin^2\theta + \cos^2\theta)} = \sqrt{a^2} = a$$

$$T(\theta) = \frac{\langle -a\sin\theta, a\cos\theta \rangle}{a} = \langle -\sin\theta, \cos\theta \rangle$$

$$T'(\theta) = \langle -\cos\theta, -\sin\theta \rangle$$

$$|T'(\theta)| = \sqrt{\cos^2\theta + \sin^2\theta} = 1$$



$$K = \frac{1}{a}$$

Theorem: (3rd way to compute curvature)

$$K(t) = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{(\vec{r}'(t))^3}$$

* Note: order on this cross product does not matter because it is absolute value

Example: Find the curvature of $y=f(x)$ (plane curve) $r(x) = \langle x, f(x) \rangle$

$$\begin{aligned} \vec{r}'(x) &= \langle 1, f'(x) \rangle = i + f'(x)j \\ \vec{r}''(x) &= \langle 0, f''(x) \rangle = f''(x)j \end{aligned}$$

$$\begin{aligned} \vec{r}'(x) \times \vec{r}''(x) &= (i + f'(x)j) \times f''(x)j \\ &= f''(x)(i \times j) + (f'(x)f''(x))(j \times j) \\ &= f''(x)k \end{aligned}$$

$$\begin{aligned} |\vec{r}'(x) \times \vec{r}''(x)| &= |f''(x)| \\ |\vec{r}'(x)| &= \sqrt{1 + (f'(x))^2} \end{aligned}$$

$$|\vec{r}'(x)| = \sqrt{1+(f'(x))^2}$$

$$K(x) = \frac{|f''(x)|}{(\sqrt{1+(f'(x))^2})^3}$$

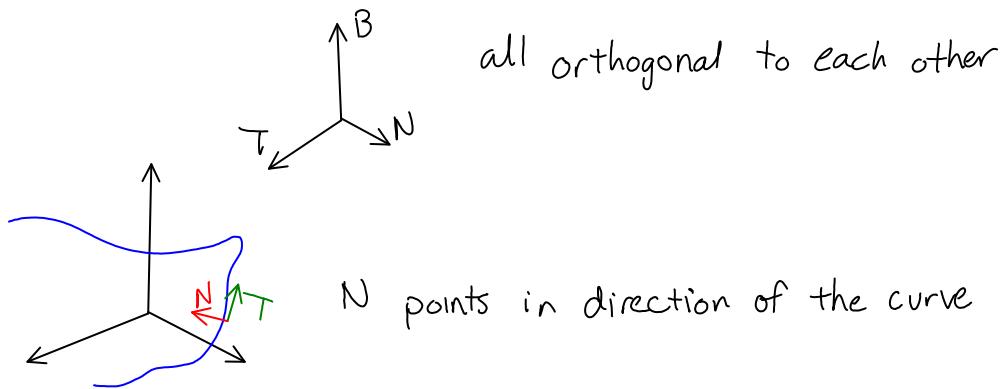
Normal and Binormal Vectors:

$$|T(t)| = 1 \text{ hence } T(t) \perp T'(t)$$

$T'(t)$ is not necessarily a vector

Unit normal vector: $N(t) = \frac{T'(t)}{|T'(t)|}$

The binormal vector $B(t) = T(t) \times N(t)$



Definition:

1. The plane defined by N and B at a point P on a curve C is called the normal plane of C at P .
2. The plane defined by T and N is called the osculating plane. (osculating means kissing)
3. .
 - The circle that lies in the osculating plane of C at P
 - has the same tangent vector at P as C
 - lies on the concave side of C
 - Has radius $p=1/k$ is called the osculating circle.

