Notes 14.3: Arc Length and Curvature

Tuesday, July 10, 2007
1:25PM

& Distance alongthe curve fromato b isarc length
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Arclength Formula: The arc length of r(t) from t=a to t=b is given by:
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Example: Find the arclength alongthe helix r(t) =< cos(t), sin(t), t>from the
point(1,0,0) to (0,1,1/2)
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We want to standardize the parameterization.
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Reparametrizing with respecttoarclength

Definition: 3 (T> = f: k( I(u) ‘ Ol\k 5(6)
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s(t)isthe length betweentimeaandtimet.

Sometimeswe cansolve fortinterms of s in thatformula. When we do that, we reparametrize r(t) as r(t(s))

Example:r(t) =< cos(t), sin(t),t> Reparametrize withrespecttoarclengthintheincreasingdirection of tfrom(1,0,0).
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Example: Find the curvature of acircle with radiusa
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Theorem: (3rd way to compute curvature)
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Example: Find the curvature of y=f(x) (plane curve) r(x) =<x, f(x) >
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1200 = dx G

K(x): |_F“@L

Normal and Binormal Vectors:
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T N Po\mLS in direction of the curve

Definition:
1. TheplanedefinedbyNandBata pintP ona curve Cis called the normal plane of Cat P.

2. Theplane definedbyTand Nis called the osculating plane. (osculating means kissing)

3. .

The circle thatliesinthe osculating plane of Cat P
hasthe same tangentvectorat P as C

liesonthe concave side of C

Has radius p=1/k is called the osculatingcircle.
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