

Notes: 15.2 Part 1: Limits

Wednesday, July 18, 2007

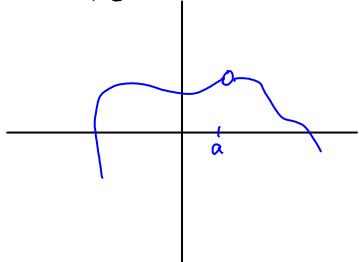
1:36 PM

$$\lim_{(x,y) \rightarrow (0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1$$

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^2-y^2}{x^2+y^2} \text{ does not exist}$$

In general we write $\lim_{(x,y) \rightarrow (a,b)} f(x,y) = L$
 $f(x,y) \rightarrow L$ as $(x,y) \rightarrow (a,b)$

Known limits : in \mathbb{R}^2

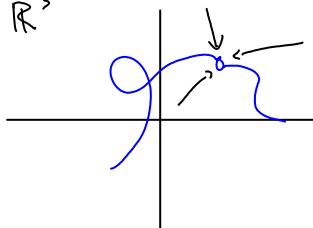


What is $\lim_{x \rightarrow a} f(x)$?

We look at $\lim_{x \rightarrow a^+} f(x) \stackrel{?}{=} \lim_{x \rightarrow a^-} f(x)$

limit exists if these are equal

In \mathbb{R}^3



Lots of paths to this point. We look at limits along paths.

Fact: If $f(x,y) \rightarrow L_1$ along path C_1 and $f(x,y) \rightarrow L_2$ along C_2 where $L_1 \neq L_2$ then $\lim_{(x,y) \rightarrow (a,b)} f(x,y)$ does not exist

Example 1: $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$ as $(x,y) \rightarrow (0,0)$

What happens as we approach $(0,0)$ along the y-axis

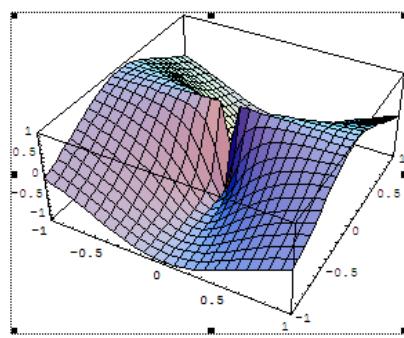
y-axis is $x=0$

$f(x,y) = \frac{-y^2}{y^2}$ along y axis

$$\lim_{y \rightarrow 0} \frac{-y^2}{y^2} = -1$$

How about the x-axis?

$$f(x,y) = \frac{x^2}{x^2} \xrightarrow{x \rightarrow 0} 1$$



So this limit does not exist.

*Caution: Checking a lot of paths can't prove the limit exists. Proving the limit does exist is harder.

Example 2: $\lim_{x \rightarrow 0} xy$

$$(x,y) \rightarrow (0,0) \quad \frac{x^2+y^2}{x^2+y^4}$$

$$\cdot x\text{ axis } (y=0) \Rightarrow \lim_{x \rightarrow 0} \frac{0}{x^2} = 0$$

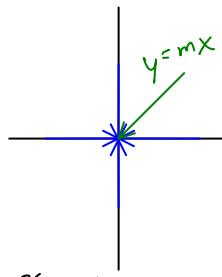
$$\cdot y\text{ axis } (x=0) \Rightarrow \lim_{y \rightarrow 0} \frac{0}{y^2} = 0$$

$$\cdot \text{along } y=mx \Rightarrow \lim_{x \rightarrow 0} \frac{x \cdot mx}{x^2+m^2x^2} = \lim_{x \rightarrow 0} \frac{m \cdot x^2}{(1+m^2)x^2} = \lim_{x \rightarrow 0} \frac{m}{1+m^2}$$

$$\text{let } m=1 \Rightarrow \lim = \frac{1}{2}$$

$$\text{let } m=2 \Rightarrow \lim = \frac{2}{5}$$

limit does not exist



In general, if you do $y=mx$, and the answer depends on m , the limit does not exist.

$$\text{Example 3: } f(x,y) = \frac{xy^2}{x^2+y^4} \text{ as } (x,y) \rightarrow (0,0)$$

$$\cdot y=mx \quad \lim_{x \rightarrow 0} \frac{x \cdot m^2 \cdot x^2}{x^2+m^4x^4} = \lim_{x \rightarrow 0} \frac{m^2 x^3}{x^2(1+m^4x^4)} = \lim_{x \rightarrow 0} \frac{m^2 x}{1+m^4x^2} = 0$$

Is there either $x = ?$ or $y = ?$ So that the degree of the top equals the degree of the bottom.

$$\text{for } \frac{xy^2}{x^2+y^4} \quad x = my^2$$

$$\lim_{y \rightarrow 0} \frac{my^4}{m^2y^4+y^4} = \frac{my^4}{(1+m^2)y^4} = \frac{m}{1+m^2} \quad \text{lim DNE}$$

$$\text{Example 4: } \lim_{(x,y) \rightarrow (0,0)} \frac{3x^2y}{x^2+y^2}$$

$$\cdot y=mx \quad \lim_{x \rightarrow 0} \frac{3x^3m}{x^2+m^2x^2} = \frac{3xm}{m^2} = \frac{3x}{m} = 0$$

$$\cdot y=mx^2 \quad \lim_{x \rightarrow 0} \frac{3x^2(mx^2)}{x^2+m^2x^4} = \lim_{x \rightarrow 0} \frac{3mx^4}{x^2(1+m^2x^2)} = \lim_{x \rightarrow 0} \frac{3mx^2}{1+m^2x^2} = 0$$

Try to prove this limit exists:

Squeeze Theorem: If $g(x,y) \leq f(x,y) \leq h(x,y)$ near (a,b) and $g(x,y) \rightarrow L$ as $(x,y) \rightarrow (a,b)$ and $h(x,y) \rightarrow L$ as $(x,y) \rightarrow (a,b)$ then $f(x,y) \rightarrow L$ as $(x,y) \rightarrow (a,b)$.

Special Case: If you're trying to prove $L=0$ then look at $|f(x,y)|$. Find $h(x,y) \geq |f(x,y)|$ and prove $h(x,y) \rightarrow 0$ as $(x,y) \rightarrow (a,b)$

Why? If $|f(x,y)| \rightarrow 0$, then $f(x,y) \rightarrow 0$ but $0 \leq |f(x,y)|$ in any case.

Example 4 continued: Prove $\lim_{(x,y) \rightarrow (0,0)} \frac{3x^2y}{x^2+y^2} = 0$

Example 4 continued: Prove $\frac{3xy}{x^2+y^2} \rightarrow 0$

$$0 \leq \left| \frac{3x^2y}{x^2+y^2} \right| = \frac{3x^2|y|}{x^2+y^2} = \left(\frac{x^2}{x^2+y^2} \right) 3|y| \leq 3|y|$$

$$0 \leq \left| \frac{3xy}{x^2+y^2} \right| \leq 3|y|$$

$$\downarrow \qquad \downarrow$$

$$0 \qquad 0$$

so by squeeze theorem $\lim_{y \rightarrow 0} \left| \frac{3xy}{x^2+y^2} \right| \rightarrow 0$

Example 5: $\lim_{(x,y) \rightarrow (0,0)} \frac{x^8 y^4}{x^2+y^2}$

$$0 \leq \frac{x^8 y^4}{x^2+y^2} \leq \frac{x^8 y^4}{x^2} = x^6 y^4$$

$$\downarrow \qquad \downarrow$$

$$0 \qquad 0$$

so by squeeze theorem $\rightarrow 0$