

Notes: 15.4 Part I

Wednesday, July 25, 2007

1:27 PM

Q: $f(x, y, z)$ a "nice" function of 3 variables. How many 3rd partial derivatives does it have?

A: $f_{_____}$

"stars + bars" method

$\underline{x} \underline{x} | \underline{y} \underline{y}$

$| * | * * = y_{z z z}$

How many ways are there to line up 3 stars, 2 bars?

$\underline{|} \underline{*} \underline{|} \underline{*} \underline{*}$

5 blanks, each one gets * or |. We're choosing the 3 places the stars go.
How many ways are there to choose 3 objects from 5.

$$\binom{\frac{s}{3}}{3} = 10$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$f(x_1, \dots, x_n)$

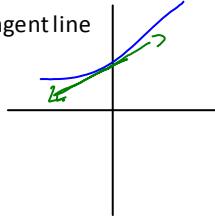
How many k -th partial derivatives?

We need $n-1$ bars.
In total, $n-1+k$ blanks. We want to choose k

$$\binom{n-1+k}{k}$$

Tangent Planes:

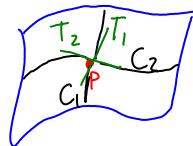
One variable: tangent line



As we zoom in on the curve, the curve becomes similar to the tangent line.

In 2 variables: we have the tangent plane.

Take a surface S given by $z = f(x, y)$. Let $P(x_0, y_0, z_0)$ be a point on S . Assume f has continuous first partial derivatives.



Let C_1, C_2 be the curves on S through P , parallel to the coordinate axis.
Let T_1, T_2 be the tangent lines to C_1, C_2 through P . The plane defined by those 2 lines is the tangent plane.

Let's find the equation of the tangent plane. Any plane through P is $A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$

Let's assume C is not 0 so we divide by $-C$.

$$a(x - x_0) + b(y - y_0) = (z - z_0)$$

Q: What is the intersection of the tangent plane with $y = y_0$?

A: The line T_1

T_1 has equation.

Slope: $f_x(x_0, y_0)$

$z = f(x_0, y_0)(x - x_0)$
 $a(x - x_0) = z - z_0$ is the intersection of the tangent plane with $y = y_0$. So $a = f_x(x_0, y_0)$.

Similarly, $b = f_y(x_0, y_0)$.

So the equation of the tangent plane to the surface $z = f(x, y)$ at $P(x_0, y_0, z_0)$ is $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$
 Note: $z_0 = f(x_0, y_0)$

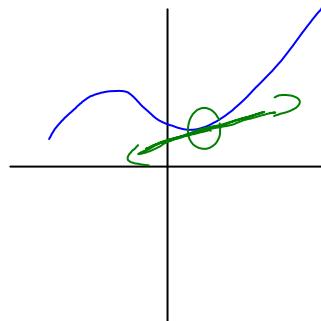
Example: Find the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at $(1, 1, 3)$.

$$f(x, y) = 2x^2 + y^2$$

$$f_x = 4x \quad f_y = 2y$$

$$z - 3 = 4(x - 1) + 2(y - 1)$$

Linear Approximations:



Recall: Curve similar to tangent line near the point of tangency.

Our last tangent plane was $z - 3 = 4(x - 1) + 2(y - 1)$
 $= 4x - 4 + 2y - 2$
 $= 4x + 2y - 6$
 $z = 4x + 2y - 3$

Idea: near $(x, y) = (1, 1)$, $L(x, y) \approx f(x, y)$

$$L(x, y)$$

e.g. $(1.1, 0.95)$
 $L(1.1, 0.95) = 3.3$
 $f(1.1, 0.95) = 3.225$

How do we get linear approximations in general?

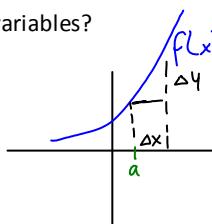
In general the tangent plane is given by $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$.
 So $z = L(x, y) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0, y_0)$

*Notation: This is also called the tangent plane approximation.

Recall: We only defined tangent planes for f_x, f_y continuous.

Q: What is the notion of differentiability for functions of two variables?

Function $f(x)$ of one variable. $\Delta x, \Delta y$
 Δx can be anything (independent variable)
 $\Delta y = f(a + \Delta x) - f(a)$



If f is differentiable at a , $\Delta y = f'(a)\Delta x + E\Delta x$
 Where $E \rightarrow 0$ as $\Delta x \rightarrow 0$

How to do this for 2 variables? We setup $\Delta x, \Delta y$ (increments) both are independent variables.
 Δz (total increment) = $f(a + \Delta x, b + \Delta y) - f(a, b)$

A: We say $f(x, y)$ is differentiable if $\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + E_1\Delta x + E_2\Delta y$ where $E_1, E_2 \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow (0, 0)$

Theorem: If the partial derivatives f_x, f_y are continuous at a point (a, b) , then the function is differentiable at that point.
 Useful for proving something is differentiable but cannot prove that something is not differentiable.

Q: $f(x,y)$ is differentiable at (a,b) Can we conclude its first partials are continuous.

A: No

Example: $f(x,y) = x^2 + y^2$ Show that f is differentiable at $(1,1)$.

$$f_x = 2x \quad f_y = 2y$$

Both are polynomials so they are both continuous, so f is differentiable.